Abstract:
An example of a radio frequency (RF) transmitter system for communication may include a transmit pre-distortion module configured to provide a second transmit calibration signal during a transmit calibration mode based on a first transmit calibration signal and one or more transmit calibration adjustment signals. The one or more transmit calibration adjustment signals may include an offset parameter associated with DC offset and an imbalance parameter associated with at least one of gain and phase imbalances. The system may include a transmit channel frequency converter coupled to the transmit pre-distortion module. The transmit channel frequency converter may be configured to provide a fourth transmit calibration signal during the transmit calibration mode based on a third transmit calibration signal and a transmit reference signal.
Abstract:
An integrated circuit includes a serdes framer interface (SFI) circuit for receiving a first set of data channels and a reference channel, generating first logic levels for the first set of data channels, and realigning the first set of data channels relative to a reference channel. The integrated circuit further includes a multiplexing circuit for receiving a second set of data channels and for merging the second set of data channels into one or more data channels. The second set of data channels is generated based on the first set of data channels. A data rate of the one or more data channels is higher than a data rate of the second set of data channels.
Abstract:
A precision timing generator includes a combiner that provides a timing signal by combining a coarse timing signal and a fine timing signal derived from a phase-shifted sinusoidal signal that has a desired phase shift. The coarse timing generator generates the coarse timing signal from a clock signal and a timing command input. The fine timing generator includes a sinusoidal-signal generator that receives the clock signal and generates a sinusoidal signal. The fine timing generator also includes a phase shifter that receives the sinusoidal signal and the timing command input and shifts the phase of the sinusoidal signal based on the timing input to generate the phase shifted sinusoidal signal.
Abstract:
Methods and apparatus for providing connection packages for high-speed integrated circuits (“ICs”) in optical, electronic, wired or wireless communications are disclosed. The connection package achieves dimensional transformation of signal routes from high-speed, high-density IC's input/output pads to the external terminals such as coaxial terminals and BGA balls, while maintaining constant characteristic impedance throughout the transmission lines. A package may include a substrate having microstrips for communicating signals between the IC pads and external terminals. A pair of differential microstrips can be positioned closer to each other near the IC pads and create capacitive coupling. Such coupled capacitance allows the width of the microstrips to be reduced. A portion of the coupled microstrips near the IC pads can be widened to increase the capacitance so that the overall transmission path can become an all-pass network—from the IC pads, through the bonding wires, to the microstrips. The rest of the portions of the microstrips can be tapered out to their respective external connectors. In addition, a multi-layer package may include a substrate, at least one coaxial external terminal formed at the side of the package for conducting a high-speed signal, BGA connectors formed at the bottom of the package for conducting low-speed signals, a microstrip for connecting the high-speed signal to the coaxial terminal, and microstrips and internal coaxial connectors for connecting the low-speed signals to the BGA connectors. Substantially constant characteristic impedance is achieved throughout the signal transmission paths in the package.
Abstract:
A frame reference signal is produced as a function of a clock signal. A first timing generator generates a coarse timing signal having a nominal period and a transition occurring at a precise temporal position with respect to the nominal period. The nominal period is a function of the frame reference signal. The temporal position is a function of a first input timing command and the clock signal. A second timing generator generates at least one fine timing transition as a function of a second input timing command and the clock signal. A combiner circuit uses the coarse timing signal to select one of the at least one fine timing transitions to output a precise timing signal, wherein the precise timing signal has a high temporal precision with respect to the frame reference signal.
Abstract:
Methods and apparatus for generating clock signals accurately locked to multi-gigabits-per-second data signals received over fiber optic channels are disclosed. The invention includes a phase detector for comparing a data signal and a clock signal, a one shot unit for detecting a data transition, an XOR, a filter, a main charge pump, a compensating charge pump for producing additive or compensating current, and a VCO for generating the clock signal. The phase detector includes multiple D-flip flops. The one shot unit includes a delay unit and an AND gate. The filter includes a resistor, a capacitor and a negative resistance amplifier. The main charge pump includes differential inputs, double outputs, cross-quading resistors, differential NPN input transistors, and a current source. The compensating charge pump includes differential NPN input transistors and a current source. In operation, when there is a data transition and if the clock signal and data signal are out of phase synchronization, then the compensating charge pump will enhance the operation of the main charge pump, and the VCO will speed up or slow down the clock signal depending on whether the clock signal is advanced or retarded in phase compared to the data signal. When there is no data transition, the compensating charge pump will in effect counterbalance the operation of the main charge pump, and the frequency of the clock signal will be maintained at the same level it was at the onset of the no data transition period.
Abstract:
A baseband signal converter device for an impulse radio receiver combines multiple converter circuits and an RF amplifier in a single integrated circuit package. Each converter circuit includes an integrator circuit that integrates a portion of each RF pulse during a sampling period triggered by a timing pulse generator. The integrator capacitor is isolated by a pair of Schottky diodes connected to a pair of load resistors. A current equalizer circuit equalizes the current flowing through the load resistors when the integrator is not sampling. Current steering logic transfers load current between the diodes and a constant bias circuit depending on whether a sampling pulse is present.
Abstract:
Well drilling, workover and completion fluids containing various water soluble condensation products of phenolic materials, formaldehyde and sulfite salts. Such condensation products may be further modified by including during the condensation reaction one or more of urea, melamine, salicylic acid, benzoic acid, phthalic acid, adipic acid, succinic acid, glutaric acid, maleic acid or the anhydrides of said acids. The drilling, workover or completion fluids may also contain clay-dispersants.
Abstract:
Examples of circuits and methods are provided for common mode stability and bandwidth broadening. A current generator circuit may include a first and a second transistor. Each of the first and second transistors includes a first, second, and third terminal. The first and second transistors provide a first and a second output current at their corresponding third terminals. A first branch including a first resistor and a first capacitor coupled in series is coupled between the third terminal of the first transistor and the first terminal of the second transistor. A second branch including a second resistor and a second capacitor coupled in series is coupled between the third terminal of the second transistor and the first terminal of the first transistor. The first and the second branches are configured to enable the current generator circuit to provide the first and second currents with improved common mode stability.
Abstract:
An example of a radio frequency (RF) transmitter system for communication may include a transmit pre-distortion module configured to provide a second transmit calibration signal during a transmit calibration mode based on a first transmit calibration signal and one or more transmit calibration adjustment signals. The one or more transmit calibration adjustment signals may include an offset parameter associated with DC offset and an imbalance parameter associated with at least one of gain and phase imbalances. The system may include a transmit channel frequency converter coupled to the transmit pre-distortion module. The transmit channel frequency converter may be configured to provide a fourth transmit calibration signal during the transmit calibration mode based on a third transmit calibration signal and a transmit reference signal.