摘要:
There is disclosed a method of generating energetic particles, which comprises contacting nanotubes with a source of hydrogen isotopes, such as D2O, and applying activation energy to the nanotubes. In one embodiment, the hydrogen isotopes comprises protium, deuterium, tritium, and combinations thereof. There is also disclosed a method of transmuting matter that is based on the increased likelihood of nuclei interaction for atoms confined in the limited dimensions of a nanotube structure, which generates energetic particles sufficient to transmute matter and exposing matter to be transmuted to these particles.
摘要:
Disclosed herein is a nanostructured material comprising carbon nanotubes fused together to form a three-dimensional structure. Methods of making the nanostructured material are also disclosed. Such methods include a batch type process, as well as multi-step recycling methods or continuous single-step methods. A wide range of articles made from the nanostructured material, including fabrics, ballistic mitigation materials, structural supports, mechanical actuators, heat sink, thermal conductor, and membranes for fluid purification is also disclosed.
摘要:
Disclosed herein is a nanostructured material comprising defective carbon nanotubes chosen from impregnated, functionalized, doped, charged, coated, and irradiated nanotubes, and combinations thereof. The defective carbon nanotubes contain a defect which is a lattice distortion in at least one carbon ring. Also disclosed is a method of purifying fluids, such as liquids, including water, as well as gases, including the air using, this nanostructured material.
摘要:
There is disclosed a method of generating non-ionizing radiation, non-ionizing 4He atoms, or a combination of both, the method comprising: contacting graphene materials with a source of deuterium; and aging the graphene materials in the source of deuterium for a time sufficient to generate non-ionizing radiation, non-ionizing 4 1-le atoms. In one embodiment, graphene materials may comprise carbon nanotubes, such as nitrogen doped single walled or multi-walled carbon nanotubes. Unlike an alpha particle, the non-ionizing 4He atoms generated by the disclosed method are a low energy particles, such as one having an energy of less than 1 MeV, such as less than 100 keV. Other non-ionizing radiation that can be generated by the disclosed process include soft x-rays, phonons or energetic electrons within the carbon material, and visible light.
摘要:
There is disclosed a material for separating a liquid from a mixture of at least two liquids, for example, for separating water from fuel. In one embodiment, the material comprises a fibrous substrate and carbon nanotubes, both of which have at least one functional group attached thereto. There is also disclosed a method for separating one liquid from another liquid using the disclosed material. In one embodiment, the method comprises flowing a mixture of liquids through the disclosed material, and either coalescing or separating at least one liquid by use of the carbon nanotubes.
摘要:
The present disclosure relates to methods for producing large scale nanostructured material comprising carbon nanotubes. Therefore, there is disclosed a method for making nanostructured materials comprising depositing carbon nanotubes onto at least one substrate via a deposition station, wherein depositing comprises transporting molecules to the substrate from a deposition fluid, such as liquid or gas. By using a substrate that is permeable to the carrier fluid, and allowing the carrier fluid to flow through the substrate by differential pressure filtration, a nanostructured material can be formed on the substrate, which may be removed, or may act as a part of the final component.
摘要:
Disclosed herein is a scaled method for producing substantially aligned carbon nanotubes by depositing onto a continuously moving substrate, (1) a catalyst to initiate and maintain the growth of carbon nanotubes, and (2) a carbon-bearing precursor. Products made from the disclosed method, such as monolayers of substantially aligned carbon nanotubes, and methods of using them are also disclosed.
摘要:
Disclosed herein is a scaled method for producing substantially aligned carbon nanotubes by depositing onto a continuously moving substrate, (1) a catalyst to initiate and maintain the growth of carbon nanotubes, and (2) a carbon-bearing precursor. Products made from the disclosed method, such as monolayers of substantially aligned carbon nanotubes, and methods of using them are also disclosed.
摘要:
Disclosed herein is a scaled method for producing substantially aligned carbon nanotubes by depositing onto a continuously moving substrate, (1) a catalyst to initiate and maintain the growth of carbon nanotubes, and (2) a carbon-bearing precursor. Products made from the disclosed method, such as monolayers of substantially aligned carbon nanotubes, and methods of using them are also disclosed.
摘要:
Disclosed herein are articles for removing contaminants from a fluid, such as a liquid or gas, the article comprising carbon nanotubes, which comprise at least one molecule or cluster attached thereto or located therein, wherein the carbon nanotubes are present in the article in an amount sufficient to reduce the concentration of contaminants in fluid that come into contact with the article. A method of making the nanomesh material used in such articles is also disclosed, as are methods of purifying fluids using these articles.