Abstract:
An injection molding machine includes a base, a stationary platen fixed to the base for holding a first mold section, and a moving platen for holding a second mold section. The moving platen is slidably supported on a platen slide surface fixed to the base and moveable along a machine axis between a mold closed position, in which the moving platen is drawn towards the stationary platen, and a maximum daylight position, in which the moveable platen is spaced axially apart from the stationary platen by a platen opening. The machine further includes a carriage support structure slidably supporting a stack mold carriage for holding a mold center section. The stack mold carriage is translatable parallel to the machine axis between a carriage advanced position and a carriage retracted position spaced axially apart from the carriage advanced position by a carriage stroke length. The carriage support structure includes a pair of beams removably fixed relative to the base, the beams extending parallel to the machine axis and spaced apart from each other by a lateral spacing, each beam having a beam length that is less than the platen opening and greater than the carriage stroke length.
Abstract:
An injection unit includes a cylinder casing comprising an inner cylindrical surface extending along an axis, and a piston housed in the casing and translatable along the axis between an advanced and a retracted position. The piston includes a piston radial surface in facing relation to the inner cylindrical surface, and the piston radial surface has a measurement detection feature. A probe is fixed relative to the cylinder casing, the probe communicating with the measurement detection feature when the piston is in and moving between the advanced and retracted positions to measure the translation of the piston.
Abstract:
An injection drive unit includes a hollow cylindrical casing rotatably supported by a housing, the cylindrical casing having an axis and a front end and a back end spaced apart along the axis; a piston in the cylindrical casing, the piston axially slidable relative to the cylindrical casing along the axis between advanced and retracted positions, and the piston rotationally locked with the cylindrical casing to rotate therewith; and a cylinder cap generally closing off the back end of the cylindrical casing and providing a first pressure chamber between the piston and the cylinder cap, the cylinder cap including a stationary part affixed to the housing and a rotary part affixed to the cylindrical casing, at least the stationary part providing a stationary end face opposed to the piston and against which fluid in the first pressure chamber bears when pressurized.
Abstract:
An injection molding machine comprises: a machine base having a top surface, and a pair of platens supported on the top surface of the machine base, at least one of the platens translatable along a machine axis between open and closed positions. An end-effector is moveable relative to the machine base between an advanced position and a retracted position for interacting with parts associated with production in the injection molding machine. An upright has a lower end adjustably coupled to the machine base and an upper end spaced apart from the top surface of the machine base and coupled to the end-effector.
Abstract:
An injection unit includes a cylinder casing comprising an inner cylindrical surface extending along an axis, and a piston housed in the casing and translatable along the axis between an advanced and a retracted position. The piston includes a piston radial surface in facing relation to the inner cylindrical surface, and the piston radial surface has a measurement detection feature. A probe is fixed relative to the cylinder casing, the probe communicating with the measurement detection feature when the piston is in and moving between the advanced and retracted positions to measure the translation of the piston.
Abstract:
A platen for supporting a mold portion in an injection molding machine comprises a mounting plate having a front face for supporting a mold portion, and a rear face spaced apart from the front face. The mounting plate has vertically spaced apart top and bottom horizontal margins, and horizontally spaced apart vertical margins. The vertical and horizontal margins generally intersect at four respective corners of the mounting plate. Four tie bar connection bosses are affixed to the rear face. Each tie bar connection boss is positioned at one of the corners of the mounting plate. Four peripheral walls extend rearwardly from the rear face of the mounting plate for transferring a clamping load from the tie bar connection bosses to the mounting plate. Each peripheral wall has a length parallel to the front face and has opposed ends joined to respective adjacent ones of the tie bar connection bosses.
Abstract:
An injection molding machine comprises: a machine base having a top surface, and a pair of platens supported on the top surface of the machine base, at least one of the platens translatable along a machine axis between open and closed positions. An end-effector is moveable relative to the machine base between an advanced position and a retracted position for interacting with parts associated with production in the injection molding machine. An upright has a lower end adjustably coupled to the machine base and an upper end spaced apart from the top surface of the machine base and coupled to the end-effector.
Abstract:
A locking device, releasably securing a tie bar to a platen, includes a housing with a bearing surface affixed to the platen coaxial with the tie bar, and a rotatable lock nut received in the housing and comprising: an inner bore with radial elements engaging the tie bar to transfer an axial clamp load to the lock nut, the elements defining an engagement portion along a lock nut first axial extent; an outer surface with at least a first step face abutting the bearing surface to transfer the axial damp load to the platen, the step face having a first radially outer extent; and a narrowing section having a second axial extent from a first position having a first diameter proximate the step face to a second position having a second lesser diameter spaced axially towards a second platen, the first diameter being less than the first radially outer extent.
Abstract:
A combination comprises first and second platens of an injection molding machine, a tie bar extending from the second platen to the first platen, and a locking device for releasably securing together the tie bar and the first platen. The locking device includes: a) a housing extending along an axis coaxial with the tie bar and including a first bearing surface affixed to the first platen; and b) a lock nut received in the housing and rotatable within the housing about the axis between locked and unlocked positions, the lock nut comprising an inner bore with radially inwardly projecting engagement elements that engage the tie bar when in the locked position to transfer an axial clamp load from the tie bar to the lock nut, the radially inwardly projecting engagement elements provided along a first axial extent of the lock nut and defining a tie bar engagement portion; an outer surface with at least a first step face for abutting the first bearing surface to transfer the axial clamp load from the lock nut to the first platen, the first step face having a first radially outer extent; and the lock nut including a narrowing section having a second axial extent bounded by a first position proximate the first step face and a second position spaced axially from the first step face in a direction towards the second platen, wherein the outer surface has a first diameter at the first position and a second diameter at the second position, the first diameter being less than the first radially outer extent and greater than the second diameter.
Abstract:
A method for injection molding comprises pre-positioning a clamp piston within a cylinder housing to a datum position axially intermediate a clamping position and an unclamped position, the clamp piston affixed to a tie bar, the clamp piston and cylinder housing cooperating to provide a clamp chamber and an unclamp chamber in a clamp cylinder housing on axially opposite sides of the clamp piston for urging the clamp piston towards the clamping and unclamped positions, respectively, when pressurized. Pre-positioning the clamp piston can include leaving a positioning gap between portions of a mold before releasably locking a tie bar to one of the moving or stationary platens, and then advancing the moving platen to substantially close the positioning gap after the releasable locking has been completed. Pre-positioning the clamp piston can include moving a stop member to an advanced position in the cylinder housing, and urging the clamp piston to bear against the stop member before the releasable locking step has been completed.