Abstract:
In one embodiment, an apparatus for fabricating nanostructure-based devices on a workpiece includes: a stage for supporting a workpiece, a radiating-energy source, and a feedstock delivery system. The workpiece has catalyst deposited thereon. The workpiece includes multiple work regions (e.g., dies). The feedstock delivery system is for delivery of feedstock gas to said catalyst. The feedstock delivery system is configured to directly heat catalyst on at least one die via simultaneously emitted multiple prongs of radiating energy. Preferably, the feedstock delivery system includes a feedstock heating system that is configured to heat the feedstock gas not merely by any global heating of a chamber containing the work region or any direct excitation of gas over the work region by the radiating energy.
Abstract:
A gastrointestinal tissue approximation clip system for approximating tissue defects, which includes an applicator that is sized to travel through an instrument channel of an endoscope; first and second tissue approximation clips that are transported to first and second locations of a tissue defect respectively by the applicator to approximate the tissue defect; first and second sutures attached to the first and second tissue approximation clips respectively; a clip approximation means for approximating the first and second tissue approximation clips. The clip approximation means and the first and second tissue approximation clips are sized to travel through the instrument channel, and the first and second tissue approximation clips are adapted to be detachably coupled to the applicator.
Abstract:
A gastrointestinal tissue approximation clip system for approximating tissue defects, which includes an applicator that is sized to travel through an instrument channel of an endoscope; first and second tissue approximation clips that are transported to first and second locations of a tissue defect respectively by the applicator to approximate the tissue defect; first and second sutures attached to the first and second tissue approximation clips respectively; a clip approximation means for approximating the first and second tissue approximation clips. The clip approximation means and the first and second tissue approximation clips are sized to travel through the instrument channel, and the first and second tissue approximation clips are adapted to be detachably coupled to the applicator.
Abstract:
Single-walled carbon nanotube transistor and rectifying devices, and associated methods of making such devices include a porous structure for the single-walled carbon nanotubes. The porous structure may be anodized aluminum oxide or another material. Electrodes for source and drain of a transistor are provided at opposite ends of the single-walled carbon nanotube devices. A gate region may be provided one end or both ends of the porous structure. The gate electrode may be formed into the porous structure. A transistor of the invention may be especially suited for power transistor or power amplifier applications.
Abstract:
In some embodiments of the invention, there is a method or apparatus for tight sealing between a first space and a second space. The second space is at least partially enclosed by a member. The method or apparatus includes or performs the step of creating or maintaining a pressure difference between a pressure in a third space at a seal assembly and pressure in each of the first space and the second space; and pushing, caused by the pressure difference, against a seal in the seal assembly to tighten sealing provided by the seal.
Abstract:
A gastrointestinal tissue approximation clip (“GI TAC”) system for approximating tissue defects, the GI TAC system including an applicator that is sized to travel through an instrument channel of an endoscope; a plurality of tissue approximation clips that are transported to a plurality of locations about a tissue defect by the applicator; a suture coupled to at least one of the tissue approximation clips; and a clip approximation means for approximating the tissue approximation clips. The clip approximation means and the tissue approximation clips are sized respectively to travel through the instrument channel, and the tissue approximation clips are adapted to be detachably coupled to the applicator.
Abstract:
A gastrointestinal tissue approximation clip (“GI TAC”) system for approximating tissue defects, the GI TAC system including an applicator that is sized to travel through an instrument channel of an endoscope; a plurality of tissue approximation clips that are transported to a plurality of locations about a tissue defect by the applicator; a suture coupled to at least one of the tissue approximation clips; and a clip approximation means for approximating the tissue approximation clips. The clip approximation means and the tissue approximation clips are sized respectively to travel through the instrument channel, and the tissue approximation clips are adapted to be detachably coupled to the applicator.
Abstract:
Solutions permit or facilitate faster and/or easier processing involving loading or unloading of a work module into a process station. For example, the work module may be a processing tube or the like and the process station may be a heating station such as a tube furnace or the like. In one embodiment, the loading is from a single side of a process station. In one embodiment, the work module includes inlets and outlets for fluid flow, with both inlets and outlets being closer toward one side of the work module than the other side.
Abstract:
In one embodiment, an apparatus for fabricating nanostructure-based devices on workpieces includes: a stage for supporting a workpiece, a radiating-energy source, and a feedstock delivery system. The workpiece has catalyst thereon. The radiating-energy source is configured to focus radiating energy toward a work region of the workpiece to directly heat catalyst at the work region, without directly heating catalyst at one or more other work regions of the workpiece. The feedstock delivery system delivers feedstock gas to the catalyst at the work region. The feedstock delivery system includes a feedstock heating system. The feedstock heating system is configured to heat the feedstock gas not merely by any global heating of the chamber or any direct excitation of gas over the work region by the focused radiating energy. Preferably, the radiating-energy source emits multiple prongs of radiating energy.