Abstract:
Non-oxidizing spacer densification method for producing semiconductor devices, such as MOSFET devices, and that may be implemented during semiconductor fabrication with little or substantially no polycide adhesion loss experienced during spacer densification. The method may be implemented to provide good polycide adhesion characteristics with reduced process complexity over conventional methods by eliminating the need for additional process steps such as metal silicide encapsulation or polysilicon surface treatments.
Abstract:
An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
Abstract:
A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches. Other aspects are disclosed, including integrated circuitry resulting from the disclosed methods and integrated circuitry independent of method of manufacture.
Abstract:
An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
Abstract:
An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
Abstract:
Non-oxidizing spacer densification method for producing semiconductor devices, such as MOSFET devices, and that may be implemented during semiconductor fabrication with little or substantially no polycide adhesion loss experienced during spacer densification. The method may be implemented to provide good polycide adhesion characteristics with reduced process complexity over conventional methods by eliminating the need for additional process steps such as metal silicide encapsulation or polysilicon surface treatments.
Abstract:
A method of forming memory array and peripheral circuitry isolation includes chemical vapor depositing a silicon dioxide-comprising liner over sidewalls of memory array circuitry isolation trenches and peripheral circuitry isolation trenches formed in semiconductor material. Dielectric material is flowed over the silicon dioxide-comprising liner to fill remaining volume of the array isolation trenches and to form a dielectric liner over the silicon dioxide-comprising liner in at least some of the peripheral isolation trenches. The dielectric material is furnace annealed at a temperature no greater than about 500° C. The annealed dielectric material is rapid thermal processed to a temperature no less than about 800° C. A silicon dioxide-comprising material is chemical vapor deposited over the rapid thermal processed dielectric material to fill remaining volume of said at least some peripheral isolation trenches. Other aspects are disclosed, including integrated circuitry resulting from the disclosed methods and integrated circuitry independent of method of manufacture.
Abstract:
An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
Abstract:
An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.