Abstract:
A method for ion implanting a species into a surface layer of a workpiece in a chamber includes placing the workpiece in a processing zone of the chamber bounded by a chamber side wall and a chamber ceiling facing said workpiece and between a pair of ports of the chamber near generally opposite sides to the processing zone and connected together by a conduit external of the chamber. The method further includes introducing into the chamber a process gas comprising the species to be implanted, and further generating from the process gas a plasma current and causing the plasma current to oscillate in a circulatory reentrant path comprising the conduit and the processing zone.
Abstract:
A method of measuring ion dose in a plasma immersion ion implantation reactor during ion implantation of a selected species into a workpiece includes placing the workpiece on a pedestal in the reactor and feeding into the reactor a process gas comprising a species to be implanted into the workpiece, and then coupling RF plasma source power to a plasma in the reactor. It further includes coupling RF bias power to the workpiece by an RF bias power generator that is coupled to the workpiece through a bias feedpoint of the reactor and measuring RF current at the feedpoint to generate a current-related value, and then integrating the current-related over time to produce an ion implantation dose-related value.
Abstract:
A valve system having high maximum gas flow rate and fine control of gas flow rate, includes a valve housing for blocking gas flow through a gas flow path, a large area opening through said housing having a first arcuate side wall and a small area opening through said housing having a second arcuate side wall, and respective large area and small area rotatable valve flaps in said large area and small area openings, respectively, and having arcuate edges congruent with said first and second arcuate side walls, respectively and defining therebetween respective first and second valve gaps. The first and second valve gaps are sufficiently small to block flow of a gas on one side of said valve housing up to a predetermined pressure limit, thereby obviating any need for O-rings.
Abstract:
A method of processing a workpiece includes introducing an optical absorber material precursor gas into a chamber containing the workpiece, generating an RF oscillating toroidal plasma current in a reentrant path that includes a process zone overlying the workpiece by applying RF source power, so as to deposit a layer of an optical absorber material on the workpiece, and exposing the workpiece to optical radiation that is at least partially absorbed in the optical absorber layer.
Abstract:
A method of processing a thin film structure on a semiconductor substrate using an optically writable mask includes placing the substrate in a reactor chamber, the substrate having on its surface a target layer to be etched in accordance with a predetermined pattern, and depositing a carbon-containing hard mask layer on the substrate by (a) introducing a carbon-containing process gas into the chamber, (b) generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, and (c) coupling RF plasma bias power or bias voltage to the workpiece. The method further includes photolithographically defining the predetermined pattern in the carbon-containing hard mask layer, and etching the target layer in the presence of the hard mask layer.
Abstract:
A method for implanting ions in a surface layer of a workpiece includes placing the workpiece on a workpiece support in a chamber with the surface layer being in facing relationship with a ceiling of the chamber, thereby defining a processing zone between the workpiece and the ceiling, and introducing into the chamber a process gas which includes the species to be implanted in the surface layer of the workpiece. The method further includes generating from the process gas a plasma by inductively coupling RF source power into the processing zone from an RF source power generator through an inductively coupled RF power applicator, and applying an RF bias from an RF bias generator to the workpiece support.
Abstract:
A method of forming a barrier layer for a thin film structure on a semiconductor substrate includes forming high aspect ratio openings in a base layer having vertical side walls, depositing a dielectric barrier layer comprising a dielectric compound of a barrier metal on the surfaces of the high aspect ratio openings including the vertical side walls and depositing a metal barrier layer comprising the barrier metal on the first barrier layer. The method further includes reflowing the metal barrier layer by (a) directing light from an array of continuous wave lasers into a line of light extending at least partially across the thin film structure, and (b) translating the line of light relative to the thin film structure in a direction transverse to the line of light.
Abstract:
A method of depositing a carbon layer on a workpiece includes placing the workpiece in a reactor chamber, introducing a carbon-containing process gas into the chamber, generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, and coupling RF plasma bias power or bias voltage to the workpiece.
Abstract:
An integrated system for processing a semiconductor wafer includes a toroidal source plasma reactor for depositing a heat absorbing layer, the reactor including a wafer support, a reactor chamber, an external reentrant toroidal conduit coupled to said chamber on generally opposing sides thereof, an RF source power applicator for coupling power to a section of said external reentrant conduit and a process gas source containing a heat absorbing material precursor gas. The integrated system further includes an optical annealing chamber.
Abstract:
A lift pin assembly for use in a reactor for processing a workpiece includes plural lift pins extending generally parallel with a lift direction, each of the plural lift pins having a top end for supporting a workpiece and a bottom end. A lift table faces the bottom ends of the pins and is translatable in a direction generally parallel with the lift direction. A small force detector senses a force exerted by the lift pins that is sufficiently large to indicate a chucked wafer and sufficiently small to avoid dechucking a wafer A large force detector senses a force exerted by the lift pins in a range sufficient to de-chuck the wafer.