Abstract:
FIG. 1 is a front, right and top perspective view of a sofa, showing my design. FIG. 2 is a rear, left and bottom perspective view thereof. FIG. 3 is a front elevation view thereof. FIG. 4 is a rear elevation view thereof. FIG. 5 is a left side elevation view thereof. FIG. 6 is a right side elevation view thereof. FIG. 7 is a top plan view thereof. FIG. 8 is a bottom plan view thereof; and, FIG. 9 is an exploded view thereof. The broken lines depict portions of the sofa that form no part of the claimed design.
Abstract:
Disclosed herein are non-platinum-based (NPB) anti-cancer compounds useful for targeted chemotherapy, e.g., to generate anti-cancer effects for the treatment of cancer and other disorders while having no or minimal toxicity. The compounds have the general formula I: (I) wherein A represents an aromatic core; at least one of Ra and Rb is an electron transfer promoter as defined herein, e.g., NH2; and at least one of Rc is a leaving group as defined herein, e.g., halogen; and the remainder of the molecule is as defined herein. Pharmaceutical compositions, methods, uses, kits and commercial packages comprising the anti-cancer compounds are also disclosed.
Abstract:
The system is a closed-loop feedback mechanism that helps a user correct improper posture. The system consists of two or more system enclosures on opposite ends of a loop formed by connecting the enclosures with a necklace portion and multi-conductor cable of essentially equal length. Worn around the neck, one system enclosure is centered on the upper chest and the other enclosure is centered on the upper back. The two enclosures measure the angle of head back and neck to upper body and detect when a user is slouching. When so detected for some predetermined period of time, a transducer in one enclosure vibrates silently to alert the user that he or she is slouching. The vibratory alert ends when a user corrects his or her posture.
Abstract:
An embodiment includes a system, comprising: a device configured to present a logical device and enable a virtual device in response to a control signal; and a processor coupled to the device and configured to: present the logical device through a first device interface; transmit the control signal to the device to enable the virtual device; and after the virtual device is enabled, present the virtual device through a second device interface.
Abstract:
A system and method for controlling an AC motor drive includes a control system programmed with an algorithm configured to optimize operation of the motor drive. Specifically, the control system is programmed to input an initial voltage-frequency command to the drive. The initial voltage-frequency command includes a voltage reference and a frequency reference corresponding to an operating point of an initial voltage/frequency (V/Hz) curve. The control system monitors a real-time output of the drive, modifies the voltage reference based on the real-time output of the drive, and transmits a modified voltage-frequency command to the drive. The modified voltage-frequency command corresponds to an operating point of a modified V/Hz curve defined by the modified voltage reference and the initial V/Hz curve.
Abstract:
Data storage systems having barriers that may reduce erasure flux and increase write-ability are provided. Data storage systems include a writing element. The writing element has a write pole with a flare region. A magnetic flux barrier is located along the write pole flare region. The magnetic flux barrier is illustratively made from an in-plane magnetically anisotropic material that has an easy plane of magnetization. In another embodiment, a data storage system includes a writing element having an air bearing surface and a shield at the air bearing surface. The shield has a magnetic permeability of approximately zero. The shield illustratively includes alternating layers of positive and negative permeabilities. The shield optionally includes a plurality of shields that may include top, bottom, and side shields.
Abstract:
In certain embodiments, a tunneling magneto-resistive (TMR) sensor includes a sensor stack positioned between a seed layer and a cap layer. The seed layer includes a first buffer layer that includes a non-magnetic nickel alloy.In certain embodiments, a sensor stack includes a top and bottom shield and a seed layer positioned adjacent to the bottom shield. The seed layer has a first buffer layer that includes a nickel alloy.
Abstract:
The present invention relates to a fiber optic telecommunication cabinet for use in fiber optic telecommunication networks. The fiber optic telecommunication cabinet comprises a base and a housing. The base has a plurality of ports passing through the base to allow passage telecommunication cables into the fiber optic cabinet. The fiber optic telecommunication cabinet further includes an optical fiber termination block attached to the base. The optical fiber termination block has a plurality of optical modules supported by the mounting frame, wherein the optical modules may be rotated in a plane perpendicular to the longitudinal direction of the fiber optic telecommunication cabinet from a first storage position to a second accessible position.
Abstract:
An apparatus includes a non-metallic interlayer between a magnetic data storage layer and a heat sink layer, wherein interface thermal resistance between the interlayer and the heat sink layer is capable of reducing heat flow between the heat sink layer and the magnetic data storage layer. The apparatus may be configured as a thin film structure arranged for data storage. The apparatus may also include thermal resistor layer positioned between the interlayer and the heat sink layer.
Abstract:
A system and method for detecting a rotor fault condition in an AC induction machine is disclosed. The system includes a processor programmed to receive voltage and current data from an AC induction machine, generate a current frequency spectrum from the current data, and identify rotor-fault related harmonics in the current frequency spectrum. The processor is also programmed to calculate a fault severity indicator using the voltage and current data, identified rotor-fault related harmonics, and motor specifications, analyze the fault severity indicator to determine a possibility of rotor fault. The processor generates an alert based on the possibility of rotor fault.