Abstract:
FIG. 1 is a perspective view of an oxygen cylinder bag showing my new design; FIG. 2 is another perspective view thereof; FIG. 3 is a front elevational view thereof; FIG. 4 is a rear elevational view thereof; FIG. 5 is a left side elevational view thereof; FIG. 6 is a right side elevational view thereof; FIG. 7 is a top plan view thereof; FIG. 8 is a bottom plan view thereof; FIG. 9 is an enlarged view of portion 9 shown in FIG. 1; and, FIG. 10 is an enlarged view of portion 10 shown in FIG. 1. The thin short even-spaced broken lines in the drawings depict stitching that form no part of the claimed design. The thick long even-spaced broken lines in the drawings depict portions of the oxygen cylinder bag that form no part of the claimed design.
Abstract:
The present invention relates to a fiber optic telecommunication cabinet for use in fiber optic telecommunication networks. The fiber optic telecommunication cabinet comprises a base and a housing. The base has a plurality of ports passing through the base to allow passage telecommunication cables into the fiber optic cabinet. The fiber optic telecommunication cabinet further includes an optical fiber termination block attached to the base. The optical fiber termination block has a plurality of optical modules supported by the mounting frame, wherein the optical modules may be rotated in a plane perpendicular to the longitudinal direction of the fiber optic telecommunication cabinet from a first storage position to a second accessible position.
Abstract:
Disclosed is an embedded communication enclosure for housing and supporting communication devices and communication cables, comprising: an enclosure body; a cable connecting member, provided within said enclosure body to connect communication cables, where an input cable from the exterior of the enclosure body is connected to a plurality of distribution cables to be brought out of the enclosure body; and a first door connected with the enclosure body, for opening and closing the front of the enclosure body, said first door comprising a second door embedded therein to provide access to the cable connecting member; wherein said cable connecting member is arranged to correspond to said second door in such a manner that said cable connecting member is exposed to outside when said second door is opened. With the embedded communication enclosure, a two-stage stage operating interface is achieved, so that communication devices and cables housed in the embedded communication enclosure will not be undesirably influenced or accessed during frequently changing and maintaining terminal jumpers.
Abstract:
A re-enterable enclosure for a cable splice includes a first cover member and a second cover member configured for engagement with each other, and movable between an open position and a closed position. The first and second cover members form a cavity for enclosing the cable splice when the cover members are in the closed position. Internal walls in at least one of the first and second cover members are configured to define a sealant containment space that at least partially surrounds the cavity. At least one latch is configured to maintain the first and second cover members in the closed position, the at least one latch configured to exert a compression force along a line extending through the sealant containment space.
Abstract:
The present invention discloses a splice holder, which is used for holding at least one splicing sleeve (4), each of the splicing sleeves (4) is used for coupling two optical fibers. The splice holder comprises: a body; a splice channel (7) provided on the body; and an elastic device (9) in each splice channel, wherein the elastic device holds the splicing sleeve (4) elastically in the splice channel. The present invention also includes a communication socket having a splice holder mounted therein. By the splice holder of present invention, optical fiber connection points can be accommodated in a communication socket, so that electrical cables and optical fibers in the communication socket may be managed in an orderly way. Furthermore, inclusion of the inventive splice holder ensures than a minimum bending radius of optical fiber can be maintained when the optical fiber is stored in the communication socket.
Abstract:
An end cap (30) for sealing an end of a closure about a cable member directed therein. The end cap (30) includes a wall member (32) having a first surface (34), an exterior surface and an outer circumferential edge. A longitudinal port (40) extends through the wall member (32) from the first surface to the exterior surface. The port (40) has a transverse cross-sectional shape defined by first and second lobed portions (42, 44) joined at a waist (46), the cross-sectional shape of the port configured for receiving a cable assembly having a corresponding transverse cross-section.
Abstract:
A method of implementing multimedia recording, comprises the following steps of: (1) establishing a multimedia channel between a media resource handling device and a recording data source; (2) a media resource controller including media controlling parameters, and indicating the media resource handling device to start a multimedia recording operation via said multimedia channel; (3) depending on the parameters indicated by the media resource controlling device, the media resource handling device saving the received media data as a multimedia data file according to a format indicated by the parameters. A system of implementing multimedia recording and media resource handling device. Using this method, system and the media resource handling device of present invention can make the media resource controller indicate the media resource handling device to implement the multimedia recording operation.
Abstract:
The present invention provides a flame retardant encapsulant composition. A composition includes 40-80 wt. % of an encapsulant comprising 60 to 80 parts by weight of hydrocarbon oil suspended in a cross-linked polymer matrix; and a liquid flame retardant. At least a portion of the liquid flame retardant can be present in the form of a dispersed liquid phase suspended in a continuous oil-rich phase that swells the cross-linked polymer matrix. In some exemplary embodiments, the oil-rich phase comprises less than 15% of the liquid flame retardant dissolved in the oil-rich phase.
Abstract:
Disclosed is an embedded communication enclosure for housing and supporting communication devices and communication cables, comprising: an enclosure body; a cable connecting member, provided within said enclosure body to connect communication cables, where an input cable from the exterior of the enclosure body is connected to a plurality of distribution cables to be brought out of the enclosure body; and a first door connected with the enclosure body, for opening and closing the front of the enclosure body, said first door comprising a second door embedded therein to provide access to the cable connecting member; wherein said cable connecting member is arranged to correspond to said second door in such a manner that said cable connecting member is exposed to outside when said second door is opened. With the embedded communication enclosure, a two-stage stage operating interface is achieved, so that communication devices and cables housed in the embedded communication enclosure will not be undesirably influenced or accessed during frequently changing and maintaining terminal jumpers.