摘要:
A magnetic disk tester which also incorporates a sensor such as an AFM or MFM is described. The device is able directly and quickly to detect and characterize sub-micrometric defects on the surface of magnetic disks. A process for finding and characterizing defects on a magnetic disk according to the invention comprises the steps of rotating the magnetic disk using a spindle motor; writing data on the magnetic disk at selected positions; finding a position on the magnetic disk having a defect which produces an error when reading the data from the magnetic disk; determining coordinates of the defect referenced from an index on the disk; stopping the spindle motor; positioning a sensing device such as an AFM or MFM head over the defect; and sensing characteristics of the defect which aid in determining a cause of the defect. A magnetic disk examination device embodying the invention comprises a spindle rotably connected to a spindle motor; a magnetic read/write head mounted on an actuator; a magnetic read/write tester for writing then reading magnetic data on the magnetic disk while rotating to find a position on the magnetic disk which produces read errors; a sensor mounted on an actuator which can be a second actuator or the same as the one for the read/write head; a positioning system which places the sensor at the position of the error while the magnetic disk is stationary; and a data acquisition system which gathers data using the sensor.
摘要:
A high-resolution magnetic encoder system includes a magnetic resistive sensor, a fixed suspension, and a mechanism. The magnetic resistive sensor is mounted to the fixed suspension above a magnetic medium having at least one magnetic track. The fixed suspension is attached to the mechanism, such as a housing, a substrate, and/or an electronic board. The sensor is adapted to perform a relative movement with respect to and in close contact to the surface of the magnetic medium. The magnetic medium may be protected by an overcoat layer. The magnetic resistive sensor may be Giant Magnetic-Resistive (GMR) sensor and/or a Tunneling Magnetic-Resistive Sensor (TMR).
摘要:
A high-resolution magnetic encoder system includes a magnetic resistive sensor, a fixed suspension, and a mechanism. The magnetic resistive sensor is mounted to the fixed suspension above a magnetic medium having at least one magnetic track. The fixed suspension is attached to the mechanism, such as a housing, a substrate, and/or an electronic board. The sensor is adapted to perform a relative movement with respect to and in close contact to the surface of the magnetic medium. The magnetic medium may be protected by an overcoat layer. The magnetic resistive sensor may be Giant Magnetic-Resistive (GMR) sensor and/or a Tunneling Magnetic-Resistive Sensor (TMR).
摘要:
A high-resolution magnetic encoder system includes a magnetic resistive sensor, a fixed suspension, and a mechanism. The magnetic resistive sensor is mounted to the fixed suspension above a magnetic medium having at least one magnetic track. The fixed suspension is attached to the mechanism, such as a housing, a substrate, and/or an electronic board. The sensor is adapted to perform a relative movement with respect to and in close contact to the surface of the magnetic medium. The magnetic medium may be protected by an overcoat layer. The magnetic resistive sensor may be Giant Magnetic-Resistive (GMR) sensor and/or a Tunneling Magnetic-Resistive Sensor (TMR).
摘要:
A high-resolution magnetic encoder system includes a magnetic resistive sensor, a fixed suspension, and a mechanism. The magnetic resistive sensor is mounted to the fixed suspension above a magnetic medium having at least one magnetic track. The fixed suspension is attached to the mechanism, such as a housing, a substrate, and/or an electronic board. The sensor is adapted to perform a relative movement with respect to and in close contact to the surface of the magnetic medium. The magnetic medium may be protected by an overcoat layer. The magnetic resistive sensor may be Giant Magnetic-Resistive (GMR) sensor and/or a Tunneling Magnetic-Resistive Sensor (TMR).
摘要:
Briefly, in a preferred embodiment, the present invention comprises a suspension having a structured surface hardening. This surface hardening may be comprised of thin film stripes of material such as nitrides, carbides, and adamantine carbon. The hardened layer has a thickness in the range of 10-100 nm.
摘要:
A method and apparatus for recording and storing information on and reproducing information from a storage medium is described, wherein the active storage medium forms part of the write/read signal path.
摘要:
An apparatus for exactly positioning a medium mounted on a spindle is provided, whereby the apparatus comprises a device for continuously changing the angular position of said medium with respect to a predefined reference position by rotating said spindle. Additionally, the apparatus comprises a friction element for braking said spindle at a predetermined position, not allowing a swing back.
摘要:
A suspension arm (300) of a disk storage device has an elastic portion (310) with thickness d1 and a rigid portion (320) with thickness d2. At the free end of the suspension arm, a slider (325) is mounted on the suspension arm. The bottom surface of the slider has a distance FH to a top surface of a hard disk (329). The suspension arm particularly comprises a heating element (330) disposed on the suspension arm. An electric current Ic flowing through electrical supply wires (350) causes the temperature of the suspension arm locally to rise and therefore its spring constant to decrease. Together with the force Fa resulting from the air cushion effect of the slider a new equilibrium flying height FH is stabilized.
摘要:
A process permits the determination of multi-dimensional distribution of magnetic fields. The process uses a magneto-resistive sensor as a physical measuring device. The measuring device is coupled with a method for algebraic reconstruction so that sectional images of the field distribution are calculated from individual measurements of the magneto-resistive effect using the algebraic reconstruction.