Abstract:
Disclosed herein are methods of forming a replacement gate structure having a reentrant profile. In one example, the method includes forming a layer of material for a sacrificial gate electrode, wherein the layer of material includes at least one impurity that changes the etch rate of the layer of material as compared to an etch rate for the layer of material without the impurity, and wherein a concentration of the at least one impurity varies along a direction that corresponds to a thickness of the layer of material, and performing another etching process on the layer of material to define a sacrificial gate electrode. The method concludes with the steps of performing another etching process to remove the sacrificial gate electrode so as to at least partially define a gate opening in a layer of insulating material and forming a replacement gate structure in the gate opening.
Abstract:
A system and method is disclosed that terminates an etch process of a semiconductor crystal material at a precisely located depth. The semiconductor crystal is made of a first material and has a buried layer of a second material that is stoichiometrically different than the first material. The buried layer is located at a depth in the first material at which it is desired to terminate the etch process. During the etch process an optical emission spectrum of the first material is monitored. The intensity of the spectrum decreases when the etch process reaches the second material of the buried layer. The etch process is terminated when the decrease in spectrum intensity is detected.
Abstract:
One or more trenches can be formed around a first portion of a semiconductor substrate, and an insulating layer can be formed under the first portion of the semiconductor substrate. The one or more trenches and the insulating layer electrically isolate the first portion of the substrate from a second portion of the substrate. The insulating layer can be formed by forming a buried layer in the substrate, such as a silicon germanium layer in a silicon substrate. One or more first trenches through the substrate to the buried layer can be formed, and open spaces can be formed in the buried layer (such as by using an etch selective to silicon germanium over silicon). The one or more first trenches and the open spaces can optionally be filled with insulative material(s). One or more second trenches can be formed and filled to isolate the first portion of the substrate.
Abstract:
A method includes forming at least one control gate over a semiconductor substrate. The method also includes depositing a layer of conductive material over the at least one control gate and the semiconductor substrate. The method further includes etching the layer of conductive material to form multiple spacers adjacent to the at least one control gate, where at least one of the spacers forms a floating gate in at least one memory cell. Two spacers could be formed adjacent to the at least one control gate, and one of the spacers could be etched so that a single memory cell includes the control gate and the remaining spacer. Also, two spacers could be formed adjacent to the at least one control gate, and the at least one control gate could be etched and separated to form multiple control gates associated with different memory cells.
Abstract:
An isolation trench structure includes both a deep trench isolation (DTI) trench and a shallow trench isolation (STI) trench. The DTI trench can be formed by etching a deeper, narrower trench in a substrate and filling the deeper trench with one or more materials (such as an oxide). The STI trench can be formed by etching a shallower, wider trench in the substrate and filling the shallower trench with one or more materials (such as an oxide). The STI trench surrounds a portion of the DTI trench, such as by completely encircling an upper portion of the DTI trench. The DTI and STI trenches are filled during different operations, and the DTI and STI trenches can be filled with the same material(s) or with different material(s).
Abstract:
A system and method is disclosed for manufacturing a bipolar junction transistor that comprises an emitter/base layer that is formed by a single deposition process. In one advantageous embodiment of the invention the emitter/base layer comprises an emitter layer that comprises an epitaxially grown mono-silicon emitter. The epitaxially grown mono-silicon emitter significantly reduces the electrical resistivity of the emitter. A non-dopant impurity such as germanium is added to the base layer to endpoint a dry plasma etch process that is applied to etch the emitter/base layer.
Abstract:
One or more trenches can be formed around a first portion of a semiconductor substrate, and an insulating layer can be formed under the first portion of the semiconductor substrate. The one or more trenches and the insulating layer electrically isolate the first portion of the substrate from a second portion of the substrate. The insulating layer can be formed by forming a buried layer in the substrate, such as a silicon germanium layer in a silicon substrate. One or more first trenches through the substrate to the buried layer can be formed, and open spaces can be formed in the buried layer (such as by using an etch selective to silicon germanium over silicon). The one or more first trenches and the open spaces can optionally be filled with insulative material(s). One or more second trenches can be formed and filled to isolate the first portion of the substrate.