Abstract:
A base structure for high performance Silicon Germanium:Carbon (SiGe:C) based heterojunction bipolar transistors (HBTs) with phosophorus atomic layer doping (ALD) is disclosed. The ALD process subjects the base substrate to nitrogen gas (in ambient temperature approximately equal to 500 degrees Celsius) and provides an additional SiGe:C spacer layer. During the ALD process, the percent concentrations of Germanium (Ge) and carbon (C) are substantially matched and phosphorus is a preferred dopant. The improved SiGe:C HBT is less sensitive to process temperature and exposure times, and exhibits lower dopant segregation and sharper base profiles.
Abstract:
A base structure for high performance Silicon Germanium:Carbon (SiGe:C) based heterojunction bipolar transistors (HBTs) with phosphorus atomic layer doping (ALD) is disclosed. The ALD process subjects the base substrate to nitrogen gas (in ambient temperature approximately equal to 500 degrees Celsius) and provides an additional SiGe:C spacer layer. During the ALD process, the percent concentrations of Germanium (Ge) and carbon (C) are substantially matched and phosphorus is a preferred dopant. The improved SiGe:C HBT is less sensitive to process temperature and exposure times, and exhibits lower dopant segregation and sharper base profiles.
Abstract:
A system and method is disclosed that terminates an etch process of a semiconductor crystal material at a precisely located depth. The semiconductor crystal is made of a first material and has a buried layer of a second material that is stoichiometrically different than the first material. The buried layer is located at a depth in the first material at which it is desired to terminate the etch process. During the etch process an optical emission spectrum of the first material is monitored. The intensity of the spectrum decreases when the etch process reaches the second material of the buried layer. The etch process is terminated when the decrease in spectrum intensity is detected.
Abstract:
A base structure for high performance Silicon Germanium:Carbon (SiGe:C) based heterojunction bipolar transistors (HBTs) with phosphorus atomic layer doping (ALD) is disclosed. The ALD process subjects the base substrate to nitrogen gas (in ambient temperature approximately equal to 500 degrees Celsius) and provides an additional SiGe:C spacer layer. During the ALD process, the percent concentrations of Germanium (Ge) and carbon (C) are substantially matched and phosphorus is a preferred dopant. The improved SiGe:C HBT is less sensitive to process temperature and exposure times, and exhibits lower dopant segregation and sharper base profiles.
Abstract:
A base structure for high performance Silicon Germanium (SiGe) based heterojunction bipolar transistors (HBTs) with arsenic atomic layer doping (ALD) is disclosed. The ALD process subjects the base substrate to nitrogen gas or hydrogen gas (in ambient temperature approximately equal to 500 degrees Celsius) and provides an additional SiGe spacer layer. The surface of the final silicon cap layer is preferably etched to remove most of the arsenic. The resulting SiGe HBT with an arsenic ALD layer is less sensitive to process temperature and exposure times, and exhibits lower dopant segregation and sharper base profiles.