Abstract:
A sound effect adjusting method and apparatus are provided. The method includes: determining an initial sound effect intensity value corresponding to each object currently selected; determining, according to the initial sound effect intensity value corresponding to each object currently selected, a sound effect intensity value corresponding to each type of object currently selected; acquiring a state of each type of object currently selected; adjusting, according to the state of each type of object currently selected, the sound effect intensity value corresponding to each type of object; and combining, according to adjusted sound effect intensity values of all types of objects currently selected, sound effects corresponding to all the types of objects, and using the combined sound effects as a sound effect adjustment result.
Abstract:
Embodiments disclosed herein enable detection and improvement of the quality of the audio signal using a mobile device by determining the loss in the audio signal and enhancing audio by streaming the remainder portion of audio. Embodiments disclosed herein enable an improvement in the sound quality rendered by rendering devices by emitting an test audio signal from the source device, measuring the test audio signal using microphones, detecting variation in the frequency response, loudness and timing characteristics using impulse responses and correcting for them. Embodiments disclosed herein also compensate for the noise in the acoustic space by determining the reverberation and ambient noise levels and their frequency characteristics and changing the digital filters and volumes of the source signal to compensate for the varying noise levels.
Abstract:
Techniques for controlling the volumes of multiple audio output devices using a collective (master) volume control and an individual volume control for each audio output device. In one set of embodiments, each individual volume control can be configured to indicate the current absolute volume level of its corresponding audio output device. When the master volume control is manually adjusted, the individual volume controls can be automatically adjusted in a manner proportional to the manual adjustment of the master volume control. In addition, when an individual volume control is manually adjusted to a setting or value that exceeds the master volume control, the master volume control can be automatically adjusted to be equal to, or greater than, the manually adjusted setting for the individual volume control. In this scenario, the other individual volume controls can remain unchanged.
Abstract:
The present invention provides methods and systems for digital processing of an input audio signal. Specifically, the present invention includes a high pass filter configured to filter the input audio signal to create a high pass signal. A first filter module then filters the high pass signal to create a first filtered signal. A first compressor modulates the first filtered signal to create a modulated signal. A second filter module then filters the modulated signal to create a second filtered signal. The second filtered signal is processed by a first processing module. A band splitter splits the processed signal into low band, mid band, and high band signals. The low band and high band signals are modulated by respective compressors. A second processing module further processes the modulated low band, mid band, and modulated high band signals to create an output signal.
Abstract:
In an audio encoder, for audio content received in a source audio format, default gains are generated based on a default dynamic range compression (DRC) curve, and non-default gains are generated for a non-default gain profile. Based on the default gains and non-default gains, differential gains are generated. An audio signal comprising the audio content, the default DRC curve, and differential gains is generated. In an audio decoder, the default DRC curve and the differential gains are identified from the audio signal. Default gains are re-generated based on the default DRC curve. Based on the combination of the re-generated default gains and the differential gains, operations are performed on the audio content extracted from the audio signal.
Abstract:
A method, apparatus, and system for measuring and analyzing the effects of dynamics modifying processors on a signal. This new approach utilizes statistical analysis techniques to provide a direct comparison and evaluation between the processed signal and the unprocessed signal's dynamic characteristics. The method identifies and quantifies Effective Dynamic Range, Clip Tolerance, Lower Limit Tolerance, Crest Factor, and Diminuendo Factor, using either peak or r.m.s values. In an alternative embodiment, the invention allows for user adjustment and control of the relative relationship of Crest Factor and Diminuendo Factor, which the user may perceive as loudness.
Abstract:
Audio clipping is prevented by attenuating an audio signal in accordance with values retrieved from a gain table. Corresponding amplitude values of a stereo audio signal are evaluated to determine a maximum of the values. The amount by which the maximum exceeds a predetermined threshold is used to calculate a table index, which is used to retrieve a gain value from the gain table. The gain value is then applied to the audio signal. The gain table is configured so that increasing index values produce decreasing gain values.
Abstract:
An audio processing device comprises a multitude of electric input signals, each electric input signal being provided in a digitized form, and a control unit receiving said digitized electric input signals and providing a resulting enhanced signal. The control unit is configured to determine the resulting enhanced signal from said digitized electric input signals, or signals derived therefrom, according to a predefined scheme.
Abstract:
An attenuation control before digital signal processing provides digital headroom. A pre-digital signal processing volume control receives a volume control signal and provides a pre-digital signal processing first attenuation of an input signal before digital signal processing. A master volume control provides a master volume control attenuation after the digital signal processing. The first attenuation may be the same as the master volume control attenuation, or it may be less or more than the master volume control attenuation, depending on the application and desired headroom. The first attenuation and master volume control attenuation may be linearly related or non-linearly related, or not a mathematical function (non-continuous, etc) at all. Changes in the attenuation may be ramped to avoid discontinuities in the signal, preferably over a period between 10 and 100 milliseconds, and are preferably applied as close to simultaneously with master volume changes as possible.
Abstract:
Systems and methods are described to automatically balance acoustic channel sensitivity. A long-term power level of a main acoustic signal is calculated to obtain an averaged main acoustic signal. Segments of the main acoustic signal are excluded from the averaged main acoustic signal using a desired voice activity detection signal. A long-term power level of a reference acoustic signal is calculated to obtain an averaged reference acoustic signal. Segments of the reference acoustic signal are excluded from the averaged reference acoustic signal using a desired voice activity detection signal. An amplitude correction signal is created using the averaged main acoustic signal and the averaged reference acoustic signal.