Abstract:
A system for management and control of audio-related equipment. A link manager may be included in the system. The link manager may be configured to manage subscriptions to multiple other audio-related devices or control panel views. When the managed data variables change, the link manager module may notify other audio-related devices and/or control panel views of the change. In response to the notification, the other audio-related devices and/or control panels may subscribe to the audio-related device with the changed data variable, to request receipt of the updated data variable. In some examples, the link manager module may also be configured to lessen the subscription burden for a particular audio-related device.
Abstract:
An ambient noise compensation system determines an ambient noise level of a listening area. The ambient noise level may be calculated from the differences between a desired audio signal in the listening area, a measured background noise level in the listening area, and measured acoustic characteristics of the listening area. Based on the ambient noise level, the system adjusts a level of the desired audio signal so that it is audible over undesirable noise.
Abstract:
A system for management and control of audio-related equipment. The system is a common architecture that provides the capability to manage, monitor and control all of the audio-related equipment in an audio system. To facilitate messaging between audio-related devices, each of the audio-related devices may be assigned a node ID a sequential manner as each audio-related device powers up. The system may also include a method for discovery of audio-related devices on an audio network. In some examples, a PEM may be located geographically remote from the audio-related devices. Accordingly, error logging, alarming and system operation may be monitored to provide troubleshooting from a remote location.
Abstract:
Systems and methods for calibrating a loudspeaker with a connection to a microphone located at a listening area in a room. The loudspeaker includes self-calibration functions to adjust speaker characteristics according to effects generated by operating the loudspeaker in the room. In one example, the microphone picks up a test signal generated by the loudspeaker and the loudspeaker uses the test signal to determine the loudspeaker frequency response. The frequency response is analyzed below a selected low frequency value for a room mode. The loudspeaker generates parameters for a digital filter to compensate for the room modes. In another example, the loudspeaker may be networked with other speakers to perform calibration functions on all of the loudspeakers in the network.
Abstract:
The present invention synchronizes the clock of the power processing devices and digital signal processing devices in an audio system. The system may include a clock, a digital signal processor (DSP), and a pulse width modulated (PWM) power processing device wherein the digital signal processor and the power processing device would use the clock for their operation. The DSP and the PWM power processing device may use, for operation, the frequency of the clock, or a multiple, integer fraction thereof, such that all clocks are synchronized and all potential sum and/or difference frequencies are predetermined and fall outside the audible frequency range. The may also include a sensor capable of detecting and reporting the clock information either through a metal wire, fiber optic wire, infrared or radio frequency link, which can allow the power processing devices to use the same clock as the DSP.
Abstract:
The present invention relates to an auto loudness circuit for performing loudness compensation automatically depending on the signal level. When the signal level decreases, loudness compensation is slowly introduced and as the signal level increases, loudness compensation is quickly removed. To do so, the auto loudness circuit utilizes a filter circuit with the characteristic of a first order bass boost. The filter circuit maintains a corner frequency which is proportional to the inverse of audio level in order to mimic the Fletcher-Munson curves. Because the circuit employs a capacitance-multiplier with a first order resistance capacitance filter, the bass boost is inversely proportional to the signal level. Thus, bass boost is achieved automatically as the program content changes so that the listener is unaware of significant changes in program material as signal levels change either through increase or decrease in volume, crescendo or new material.
Abstract:
A system for management and control of audio related equipment. The system provides an architecture to manage, monitor, and control all of the audio related equipment in an audio system. A communication protocol used within the system allows standardized communication between the performance equipment mangers and the audio related devices, as well as device-to-device communication. The protocol allows users to add audio related devices to an audio system without performing a setup to configure communication between the devices.
Abstract:
A method, apparatus, and system for measuring and analyzing the effects of dynamics modifying processors on a signal. This new approach utilizes statistical analysis techniques to provide a direct comparison and evaluation between the processed signal and the unprocessed signal's dynamic characteristics. The method identifies and quantifies Effective Dynamic Range, Clip Tolerance, Lower Limit Tolerance, Crest Factor, and Diminuendo Factor, using either peak or r.m.s values. In an alternative embodiment, the invention allows for user adjustment and control of the relative relationship of Crest Factor and Diminuendo Factor, which the user may perceive as loudness.
Abstract:
Systems and methods for calibrating a loudspeaker with a connection to a microphone located at a listening area in a room. The loudspeaker includes self-calibration functions to adjust speaker characteristics according to effects generated by operating the loudspeaker in the room. In one example, the microphone picks up a test signal generated by the loudspeaker and the loudspeaker uses the test signal to determine the loudspeaker frequency response. The frequency response is analyzed below a selected low frequency value for a room mode. The loudspeaker generates parameters for a digital filter to compensate for the room modes. In another example, the loudspeaker may be networked with other speakers to perform calibration functions on all of the loudspeakers in the network.