Abstract:
In a flywheel in which narrow portions to be engaged with a coil spring included in the flywheel are formed of recessed portions made by recessing the surface of a flywheel cover, the portions of a sensor plate welded to the front cover, which confront with the recessed portions are made more fragile than adjacent portions of the sensor plate. With this configuration, when the front cover is deformed, stress applied to welded portions adjacent to the recessed portions can be suppressed since the fragile portions are easily deformed. Accordingly, even if the recessed portions are formed to the surface of a flywheel cover, stress can be prevented from being concentrated on the coupling portions of the flywheel cover and the sensor plate.
Abstract:
A method for plastic molding of a hub recess for a fast-running turbine component is provided. The plastic molding of the hub recess occurs by hydraulic expansion, by way of a hydraulic fluid introduced into the hub recess of the turbine component under high pressure.
Abstract:
An energy storage device comprising a large scale flywheel supported by a fluid bearing. The energy storage device is a very large scale structure having a flywheel of a diameter greater than 100 feet and a concrete steel reinforced rim weighing in excess of 1000 metric tons. In off peak periods the apparatus is operated as a motor with energy input causing the rim to rotate up to a predetermined speed and to maintain rotation at that speed in the power take off mode during peak power time periods, the operation of the electrical circuitry is reversed and the flywheel generates electrical energy which is delivered by the storage device to the power grid. As energy is delivered the rotational speed of the flywheel diminishes and gravitational waves capable of being shaped and modulated are generated. Likewise as energy is added to the device the rotational speed of the flywheel increases and again gravitational waves capable of being shaped and modulated are generated. Such gravitational waves can be utilized for communication, propulsion and for the purpose of testing new physical theories, concepts, and conjectures. A unique electrical circuit utilizing coils and power transistors under computer software control facilitates the functioning of the apparatus as a peak power energy storage device, as an energy supply device obtaining energy directly from the wind or as a gravitational-wave generating device.
Abstract:
A fiber reinforced composite flywheel for energy storage has a plurality of disks in the form of a coil produced of continuous hoop and radial fibers, each disk having a mix of fiber types in the hoop direction, relatively strong fibers disposed about an inner section of the disk, an intermediate section of the disk comprised of relatively strong and relatively lower strength fibers, and an outer portion having a mix of fibers fewer relatively strong fibers. A fiber reinforced composite flywheel, alternatively or in addition, has a higher volume of radial fibers disposed about the intermediate section of the disk, to increase radial strength in a banded area of the disk subject to increased radial stress. Preferably, the disk is composed with a 3-dimensional orthogonal weave architecture which allows the fibers to shear during weaving to provide minimum distortion of the spiral woven disk. Constructing a spiral woven composite flywheel disk in accordance with the invention optimizes stress and strength properties to increase operating speed and energy storage capacity at minimum cost.
Abstract:
A method of making a torsional vibration damping apparatus which is used in the power train between the engine and the transmission of a motor vehicle and wherein two flywheels are rotatable relative to each other against the oppositions of dampers in a fluid-containing annular chamber of the flywheel which is driven by the output shaft of the engine involves rotation of the chambered flywheel at 4000-7000 RPM during or immediately following admission of a viscous fluid medium into the chamber. Such rotation results in complete expulsion of air from the radially outermost portion of the chamber and renders it possible to properly balance the chambered flywheel in a next-following step. The balancing step includes rotating the chambered flywheel at 400-2000 RPM. Such balancing step can be carried out prior or subsequent to coupling of the chambered flywheel with the other flywheel.
Abstract:
An energy storage wheel containing a plurality of solid peripheral segments juxtaposed side by side in the direction of the circumference of the wheel and made from a material having a high density and a low thermal expansion coefficient, such as stainless steel or ceramics. The solid peripheral segments are secured one with respect to the next one and as a whole by using a first and a third continuous winding, respectively, which are connected to the hub of the wheel by a second winding. The windings are constructed of filaments of a material whose density is less than that of the material from which the wheel segments are made.
Abstract:
A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.
Abstract:
A vibration absorber for a helicopter rotor includes a hub portion, a mass portion encircling the hub portion and a plurality of resilient arms extending in a spaced-apart spiral pattern between the hub and the mass. In operation, the hub portion of the vibration absorber is mounted on a helicopter rotor so as to be rotated with the rotor about an axis of rotation of the rotor, the resilient arms ensuring that the mass is capable of equal resilient deflection in any direction within its plane of rotation whereby the vibration absorber simultaneously reduces in-plane vibration forces of different frequencies.
Abstract:
The invention relates to a composite wheel capable of withstanding large centrifugal forces, including at least two elements made of materials with different yield strengths, one of said elements being peripheral and the other element connecting said peripheral element to the wheel hub, characterized in that said element connecting the peripheral element to the hub comprises two conical flanges having their concave sides facing each other, means being provided to vary the angle subtended by the flanges whereby to obtain, as necessary, either a limitation of the stresses exerted on the material forming the flanges (the diameter of the wheel remaining constant and the angle between flanges widening), or an accompaniment by said flanges of the expansion undergone by the peripheral material (the wheel diameter increasing and the inter-flange angle widening or narrowing).A composite wheel according to this invention may be used with advantage but by no means exclusively as a test wheel for an eddy-current machine, a linear motor, a brake, or magnets for providing magnetic lift. Alternatively, it may be used as a high energy storage wheel for a variety of vehicles.
Abstract:
An inertial energy storage wheel defined by a plurality of independent, concentric rotor ring assemblies and a center hub rotatable about a vertical axis. The hub includes a plurality of spaced-apart, radially oriented teeth having sides parallel to the axis of rotation which diverge in a radially outward direction, which lie on radii having their origin at the axis of rotation of the wheel, and which are engaged by correspondingly shaped holes of the innermost ring assembly carried by the hub. The holes have radially outwardly diverging vertically oriented side walls which snugly engage the sides of the teeth when the wheel is at rest as well as during high speed operation of the wheel when the rotor ring assembly dilates and moves radially outward with respect to the teeth. Additional rotor ring assemblies are concentrically disposed about the innermost assembly and connected thereto so that the rotor ring assemblies can dilate by differential amounts. The rotor ring assemblies are constructed of a plurality of coaxial rings held together by U-shaped clamps and the tooth receiving holes of the innermost assembly are defined by opposing, aligned grooves in opposing end faces of the rings.