Abstract:
A propeller shaft (1) that is a power transmission shaft has a shaft member (2) as a tubular body made of iron-based metal and a balance weight (3) made of iron-based metal and welded to an outer peripheral surface of this shaft member (2). At least a part of the balance weight (3) of the propeller shaft (1) is covered with a sacrificial metal coating (4) made of sacrificial corrosion prevention material that contains metal whose ionization tendency is higher than that of metal forming the shaft member (2). With this, it is possible to suppress local progression of corrosion at a periphery of the balance weight (3) and improve durability of the propeller shaft (1).
Abstract:
A rotating flow diverter has a lubricated sealed bearing assembly for isolating bearing elements from wellbore fluids under pressure. The sealed bearing assembly is supported between an outer bearing housing and an axially rotatable quill. The bearing assembly further has bearing elements with a bearing lubricant under pressure and a seal assembly. The seal assembly has at least one sealing element which comprises a body, the body having an outer peripheral wall, an inner sealing surface having a plurality of sealing lips and an annular cavity, and a loading ring for compressionally fitting within the annular cavity to urge the sealing surface radially inwardly for sealing engagement with tubulars.
Abstract:
The invention relates to an apparatus and method for constructing a flywheel for energy storage, the flywheel having a drive transfer element and a rim comprising a mass element, the drive transfer element being coupled to the rim by a winding around each, and the flywheel incorporating an indicator ring functioning as a mechanical fuse for providing an indication of excessive flywheel component stress.
Abstract:
A force generator for an active vibration control (AVC) system provides a mass located upon an inner circular member which is movable within an outer circular member to simultaneously complete one revolution about its axis as it orbits within the outer circular member to compensate for sensed vibrations. A crank mounts the inner circular member and a counterweight. The crank is rotated by a prime mover such as an electric motor. The mass will therefore generate a sinusoidal inertial force in a straight line. Multiple systems are suitably arranged to be used in conjunction with one another to provide a wide range of inertial force outputs.
Abstract:
An engine balancing device is provided that is adapted to be coupled to an axial end of a crankshaft of an engine. The engine balancing device comprises a generally disk shaped main body and at least one balance tab. The generally disk shaped main body includes a hub portion with a centrally located crankshaft mounting bore configured and arranged to receive the crankshaft therein. The at least one balance tab is disposed on the main body and configured and arranged to be selectively removed to adjust a dynamic balance of the engine.
Abstract:
A double clutch transmission includes a first input shaft receiving power from a crankshaft through a first clutch and comprising at least one first drive gear, a second input shaft receiving power from a crankshaft through a second clutch and comprising at least one second drive gear, a first output shaft comprising at least one first driven gear to receive the power from the second input shaft, a second output shaft comprising at least one second driven gear to receive the power from the first input shaft, and a flywheel interposed between the first clutch and the second clutch wherein a bearing supporting the flywheel is disposed on an exterior circumference of the second input shaft.
Abstract:
A counter weight flywheel includes an inner cylindrical body and an outer cylindrical body disposed between an upper faceplate and a lower faceplate. A shaft tube is positioned in the inner cylindrical body, and plural tensile bars are inserted in the inner cylindrical body, respectively having one end secured on the fixing members of the shaft tube and the other end fixed on the inner wall of the outer cylindrical body. Plural reinforcing bars and plural reserve tubes are respectively fixed between the inner and the outer cylindrical body. A counter weight area formed between the inner and the outer cylindrical body is filled up with concrete or iron sand, and the inner cylindrical body has its interior forming a hollow area. Thus, the counter weight flywheel is made by combining iron plates and concrete or iron sand.
Abstract:
A hermetic compressor with a connecting rod that can be assembled with a crankshaft and a piston while the piston is in a cylinder integrally formed with a frame. The hermetic compressor includes the frame formed with a hollow portion, a drive unit disposed on the frame, a cylinder integrally formed with the frame, the piston disposed within the cylinder, a crankshaft, and a connecting rod. The piston linearly reciprocates within the cylinder. The crankshaft has a main shaft portion adapted to rotate by a drive force of the drive unit, an eccentric shaft portion provided at one end of the main shaft portion, and a weight balance portion provided between the main shaft portion and the eccentric shaft portion. The main shaft portion is rotatably supported in the hollow portion. The eccentric shaft portion is positioned eccentrically relative to the main shaft portion. The weight portion is adapted to compensate for a rotating imbalance caused by the eccentric shaft portion. The eccentric shaft portion is fabricated separately from the crankshaft and rotatably coupled to the weight balance portion. The connecting rod couples the eccentric shaft portion and the piston. The connecting rod is formed to convert a rotating motion of the crankshaft into the linearly reciprocating motion of the piston.
Abstract:
A weight 4 which is held by a weight holder 3 in a balancer has a pressing face 4b′ which is pressed against a guide face 12a provided along the circumferential direction of rotation of the weight holder 3 by centrifugal force generated by rotation of a rotary body. When the rotary body rotates, the weight 4 which is pressed against the guide face 12a via the pressing face 4b′ changes its position relative to the rotary body in the circumferential direction of rotation, whereby the weight 4 is disposed in a position in which it suppresses whirling motion of the rotary body. The guide face 12a and pressing face 4b′ are inclined relative to the axial direction of rotation so as to tend to outward side in the diametrical direction of rotation as tending to one side in the axial direction of rotation. The weight 4 is pressed against a receiving portion 7a′ by component of the centrifugal force, in which the component acts along the guide face 12a and pressing face 4b′.
Abstract:
A flexplate comprising a single integral body portion having a generally circular shape. One or more borings are formed in the body portion for receiving an end of a crankshaft of the engine on a first side of the body portion and for receiving a torque converter of an unrelated transmission on a second side of the body portion. Apertures may be formed in the body portion and positioned on the flexplate for alignment with corresponding apertures on a flange mounted to the end of the crankshaft and apertures on the torque converter.