Abstract:
An electronic module is provided in which a chip is disposed over a substrate and electrically connected to the substrate by a plurality of electrical connect structures disposed between the chip and the substrate. A heat distributor, fabricated of a thermally conductive material, is disposed between the chip and the substrate and sized to extend beyond an edge of the chip to facilitate conduction of heat laterally out from between the chip and substrate. The heat distributor includes openings sized and positioned to allow the electrical connect structures to pass through the heat distributor without electrically contacting the heat distributor. The heat distributor is electrically isolated from the electrical connect structures, the chip and the substrate. In one implementation, the heat distributor physically contacts a thermally conductive enclosure of the electronic module to facilitate conduction of heat from between the chip and substrate to the enclosure.
Abstract:
A device includes a substrate, a first antenna connection, and a first retention mechanism. The substrate has a top surface and a bottom surface. The first antenna connection is mounted directly to the top surface of the substrate, and is configured to connect with a first antenna. The first retention mechanism is connected at a first location of the bottom surface of the substrate to provide support for the substrate at the first antenna connection when the first antenna connection is connected to the first antenna. The first location of the first retention mechanism is selected to be directly below the first antenna connection.
Abstract:
A HVAC unit manufacturing method and a HVAC system are disclosed herein. In one embodiment, the HVAC system includes: a controller having control board terminals, a parallel wiring harness having a first and a second connection header, the first connection header coupled to the control board terminals, and a switch having terminals. The terminals of the switch including: a pair of functional terminals configured to indicate a status of the switch and a pair of jumpered terminals independent of the pair of functional terminals and internally connected together within the switch, wherein designated combinations of the terminals indicate a circuit configuration for employing the switch in the HVAC system with each of the terminals having a particular design that dictates a specific corresponding connection header be used for each of the designated combinations, wherein a single one of the designated combinations of the terminals corresponds to the second connection header.
Abstract:
Methods and devices for minimizing and maximizing displayed output associated with applications are provided. More particularly, an application presented across two or more screens of a device in a landscape mode can be minimized to present portion of the application in one of the screens. With respect to a maximization operation received with respect to a page of an application results in the expansion of the displayed portion of the application to multiple screens of the device. Input to effect minimization and maximization operations can be entered in one or more gesture capture regions associated with the screens.
Abstract:
A system for managing air flow computing devices in a rack includes a stall and filler elements. The stall includes a stall top panel and two side panels spaced apart from one another. The stall accommodates a rack computing system. The filler elements fill gaps between the computing devices of the rack computing systems and the panels of the stalls. An air moving system moves air from the cold aisle through cold-aisle facing air inlets of the computing devices. The filler elements inhibit air moving toward the cold aisle-facing inlets from leaking through gaps between the computing devices of the rack computing systems and the stall panels such that the filler elements inhibit air moving toward inlets in the computing devices from leaking through the gaps between the computing devices in the rack and the stall panels.
Abstract:
Embodiments are described for handling situations when a window or application is repositioned and clipped in a multi-screen device. In embodiments, if the window is repositioned such that it cannot be displayed entirely on one display, but would otherwise spillover or spill onto another display, the window or application is clipped. Such clipping is performed based on the size and location of the window and the size and location of the display.
Abstract:
A handheld electronic device includes a body, a transparent cover, and a display panel. The body has a display opening. The transparent cover is disposed on the display opening. The transparent cover includes a first surface facing outside of the body and a second surface opposite to the first surface, and the second surface includes a curved surface. A curvature radius of the first surface is different from a curvature radius of the second surface. The display panel bends along the second surface and is attached to the second surface. Moreover, a method for assembling the display panel of the handheld electronic device is provided.
Abstract:
A method and apparatus are provided for implementing simultaneously connecting of multiple devices in a multi-tiered, multi-directional, enhanced tolerance system with mechanical support structures. A main system planar assembly and an elevated planar assembly share a direct connection provided by a plurality of connectors with no cables. A mechanical support bracket is attached to a top surface of the main system planar assembly positioning and supporting the elevated planar assembly spaced appropriately for accurately connecting respective connectors with respective chassis connectors. The elevated planar assembly includes a stiffening component to facilitate proper spacing between upper and lower levels of respective connectors and tool-less insertion and extraction of the elevated planar assembly.
Abstract:
Alignment markers are added to each layer of a multiple layer substrate for proper alignment. Optical alignment markers are applied on the surface of each substrate layer. Groups of alignment markers are arranged in localized areas on each substrate layer. Each localized group of alignment markers are referred to as alignment target areas. The alignment markers in a first alignment target area on the first substrate layer are to be aligned with corresponding alignment markers in a second alignment target area on the second substrate layer. In some embodiments, the first alignment target area includes an alignment marker configured for manual alignment and another alignment marker configured for machine alignment. The second alignment target area has a corresponding manual alignment marker and machine alignment marker.
Abstract:
A multi-display device is adapted to be dockable or otherwise associatable with an additional device. In accordance with one exemplary embodiment, the multi-display device is dockable with a smartpad. The exemplary smartpad can include a screen, a touch sensitive display, a configurable area, a gesture capture region(s) and a camera. The smartpad can also include a port adapted to receive the device. The exemplary smartpad is able to cooperate with the device such that information displayable on the device is also displayable on the smartpad. Furthermore, any one or more of the functions on the device are extendable to the smartpad, with the smartpad capable of acting as an input/output interface or extension of the smartpad. Therefore, for example, information from one or more of the displays on the multi-screen device is displayable on the smartpad.