Abstract:
A method of encoding a bit sequence over a Physical Downlink Control Channel (PDCCH) having Downlink Control Information (DCI) including: determining DCI bits to provide a DCI bit sequence; performing a CRC calculation on the DCI bit sequence to provide a CRC parity bit sequence; scrambling the CRC parity bit sequence to provide a scrambled CRC bit sequence; if the DCI format is LTE-A, further scrambling the DCI together with the attached scrambled CRC bit sequence to provide a LTE-A scrambled bit sequence; channel coding either the DCI attached scrambled CRC bit sequence or LTE-A scrambled bit sequence to provide a channel coded bit sequence; modulating the channel coded bit sequence to provide a modulated symbol sequence; layer mapping the modulated symbol sequence to one or more antennas associated with a transmitter to provide one or more layers having a symbol sequence; and precoding the layered symbol sequences.
Abstract:
The invention relates to a method for providing control signalling associated to a protocol data unit conveying user data in a mobile communication system and to the control channel signal. The invention also provides a mobile station and a base station and their respective operation in view of the newly defined control channel signals. To reduce the control channel overhead, the invention suggests defining a common field for the transport format and redundancy version in the control channel information format. According to one approach, the common field is used to jointly encode transport format and redundancy version therein. According to another aspect, one shared field is provided on the control channel signal that indicates either a transport format or a redundancy version depending of whether the control channel signal relates to an initial transmission or a retransmission. In another embodiment, further enhancements to a HARQ protocol are suggested for addressing certain error cases.
Abstract:
A method and apparatus for allocating subcarriers in an orthogonal frequency division multiple access (OFDMA) system is described. In one embodiment, the method comprises allocating at least one diversity cluster of subcarriers to a first subscriber and allocating at least one coherence cluster to a second subscriber.
Abstract:
A method and system for steganography and steganalytic techniques are provided for effecting embedded communications in a variety of communication environments. One aspect may include an embedded transmitter for inserting embedded data into a packet and an embedded receiver for receiving the packet via, for example, a packetized communication network such as the Internet. Various aspects of the present invention provide robust communications with optimized throughput and may include various error handlers to maximize performance and ensure transfer of incorrupt data. A method for identifying and blocking embedded communications is also provided.
Abstract:
Systems and methods are provided for processing a payload portion of a received signal in a single carrier mode or a multiple carrier mode based on a portion of the received signal. A single carrier signaling portion is received at a first rate, and whether the payload portion of the signal is a single carrier signal or a multiple carrier signal is detected from the received single carrier signaling portion. The payload portion of the received signal is received at the first rate and demodulated in a single carrier mode if the detecting determines that the payload portion of the received signal is a single carrier signal, and the payload portion of the received signal is demodulated in a multiple carrier mode if the detecting determines that the payload portion of the received signal is a multiple carrier signal.
Abstract:
A mobile station includes a channel quality estimation unit configured to estimate downlink channel quality based on a reference signal from a base station and to output the estimated downlink channel quality as channel estimation information; an acknowledgement information determining unit configured to determine whether a downlink data channel from the base station is correctly received and to output the determination result as acknowledgement information; and an acknowledgement information prioritizing unit configured to cause the acknowledgement information to be preferentially transmitted to the base station if transmission timings of the channel estimation information and the acknowledgement information coincide.
Abstract:
Existing message fields and/or message parameters are configured to facilitate the packet and message synchronization and decoding tasks that conventionally rely upon a known bit sequence in each packet, thereby eliminating the need for a predefined message preamble in each packet. In example embodiments, the unique identifier of each transmitter is structured to facilitate determination of bit polarity and the start of each packet; packet sequence numbers use an unconventional counting sequence to assure synchronizing bit transitions; and so on. Other techniques, such as the use of run-length limited (RLL) message encoding, or 8b/10b encoding, to assure within-packet bit transitions, are also used to enhance clock synchronization and proper header location determination.
Abstract:
The present application relates to a method in which a terminal performs channel interleaving in a multi-antenna wireless communication system. More particularly, the method comprises the following steps: constructing both channel quality indicator (CQI) information and coded data information into preset bit-wide vectors to generate a first interleaver input vector sequence; repeating both rank indicator (RI) information and acknowledgement/negative acknowledgement (ACK/NACK) information per the number (NL) of transmission layers to generate a second interleaver input vector sequence of preset bit-wide vectors and a third interleaver input vector sequence of preset bit-wide vectors; mapping the first interleaver input vector sequence, the second interleaver input vector sequence, and the third interleaver input vector sequence to an interleaver matrix, respectively; and reading the interleaver matrix by a column basis to generate an output vector sequence. The preset bit-wide is defined by the product of a modulation order (Qpm) and the number (NL) of transmission layers.
Abstract:
Disclosed is a wireless communications device with strong realtime performance, giving rise to no latency in communications even if communications errors arise in the communication frame MAC header. MAC header information is used to determine whether or not the destination address of a received data frame is the address of a concerned wireless communications device (1). MAC header information allocated among a plurality of MAC headers is employed in selecting MAC header information without errors. If all MAC header information is in error, a majority determination processing unit (13) is used to effect a majority determination of the MAC header information and generate correct MAC header information. A received data extraction unit (14) removes the received frame header, etc., extracts the received data, and outputs same to an external device.
Abstract:
Header encoding for SC and/or OFDM signaling using shortening, puncturing, and/or repetition in accordance with encoding header information within a frame to be transmitted via a communication channel employs different respective puncturing patterns as applied to different portions thereof. For example, a first puncturing pattern is applied to a first portion of the frame, and a second puncturing pattern is applied to a second portion of the frame (the second portion may be a repeated version of the first portion). Shortening (e.g., by padding 0-valued bits thereto) may be made to header information bits before they undergo encoding (e.g., in an LDPC encoder). One or both of the information bits and parity/redundancy bits output from the encoder undergo selective puncturing. Moreover, one or both of the information bits and parity/redundancy bits output from the encoder may be repeated/spread before undergoing selective puncturing to generate a header.