摘要:
A sensor assembly includes a first structure and a second structure disposed radially outwardly of the first structure. Also included is a sensor body extending through the first and second structures, the sensor body having first and second ends, the second end located radially outwardly of the second structure. Further included is a first sealing assembly configured to couple the sensor body to the second structure and to accommodate movement of the sensor body due to relative movement between the first and second structures. Yet further included is an interior cavity of the sensor body, a linear position sensor operatively coupled to the sensor body, and a rotary linkage assembly located within the interior cavity and coupled to a target. Also included is a rotary-to-linear interface disposed between the rotary linkage assembly and the sensor and configured to convert rotational motion of the rotary linkage assembly to linear motion.
摘要:
A measuring system is provided in which the evaluation of a measuring signal is resolved in a variably spread manner or is output in a variably scaled manner on a dial as a function of the measured value range.
摘要:
[Object] To detect a rotational angle accurately and also to drive more safely. [Solution] Provided is an actuator (300) including: a reduction gear (320) that reduces, by a certain reduction ratio, a rotational velocity of an input shaft joined to a rotary shaft of a motor (360), and transmits the reduced rotational velocity to an output shaft (350); a first absolute angle encoder (330) that detects a rotational angle of the input shaft; and a second absolute angle encoder (340) that detects a rotational angle of the output shaft.
摘要:
Rotation angle detection apparatus includes a magnet provided in a main gear and a magnetism detector positioned to face to the magnet. Magnet rotates integrally with main gear and magnetism detector detects changes in magnetic field of magnet so a rotation angle of main gear is detected. Main gear includes bottomed recessed part and plurality of mounting pins arranged in recessed part. Magnet is inserted in recessed part wherein a part of magnet protrudes from an upper end of the recessed part. Magnet inserted in recessed part is pressed against main gear by an elastically deformable retaining plate made of non-magnetic material. An outer portion of retaining plate includes plurality of mounting holes. Magnet inserted in recessed part is pressed against main gear by elastically deformed retaining plate and mounting pins inserted in mounting holes are thermally caulked wherein magnet is secured to the main gear.
摘要:
A method for evaluating mechanical performance of a switchgear device having at least one pole which includes a pair of contacts movable between open and closed positions, a support arm of a first contact, a support arm drive including a rotary pole shaft and a rod pivotably coupling the drive to the support, an energy storage system for moving the arm to close the contacts, and a toggle device with a trip latch, the method including measuring the angle of rotation of the pole shaft during contact closing, deriving specific values by measuring the angle of rotation, comparing the values with an initial reference value, identifying wear performances of the drive by comparing the specific values with the reference value, determining on a variation curve of the angle of rotation versus time, a first specific time to reach a first inflection point when the pole shaft reaches a maximum speed of rotation, and a second time to reach a point on the curve at a theoretical final angle of rotation when the contacts are closed, calculating the elapsed time between the first and second times, and deriving an excess energy level of the energy storage system as a function of the difference between the calculated elapsed time and a theoretical value.
摘要:
There is provided a test indicator with which a correct measurement value can be easily obtained. A test indicator includes a gauge head including a contact ball at a tip end, a body case which pivotally supports the gauge head, and a rotary encoder which detects a rotation displacement amount of the gauge head. The test indicator further includes a correction unit which corrects a measurement value according to an angle θ between a measurement target surface W and the gauge head. The correction unit includes an angle memory which stores the angle θ between the measurement target surface W and the gauge head, a correction coefficient calculation unit which calculates a correction coefficient according to the angle θ, and a correction arithmetic unit which multiplies, by the correction coefficient, a displacement amount of the contact ball based on a detection value by the rotary encoder.
摘要:
A cam is immersed in water at an elevated temperature and/or pressure. A reciprocating cam follower also immersed in the water contacts a surface of the cam. The cam follower includes a permanent magnet. An electrically conductive coil is magnetically coupled with the permanent magnet such that movement of the cam follower induces an electrical signal in the electrically conductive coil. A sealed housing also immersed in the water contains the electrically conductive coil and seals it from contact with the water. Leads of the coil are electrically accessible from outside the sealed housing and from outside the water. Alternatively, the cam includes magnetic inserts, the cam follower is replaced by a sensor arm of magnetic material, and the sensor arm and/or the inserts are magnetized whereby rotation of the rotary element causes time modulation of the magnetic coupling and induces coil voltage.
摘要:
A sensor assembly includes a first structure and a second structure disposed radially outwardly of the first structure. Also included is a sensor body extending through the first and second structures, the sensor body having first and second ends, the second end located radially outwardly of the second structure. Further included is a first sealing assembly configured to couple the sensor body to the second structure and to accommodate movement of the sensor body due to relative movement between the first and second structures. Yet further included is an interior cavity of the sensor body, a linear position sensor operatively coupled to the sensor body, and a rotary linkage assembly located within the interior cavity and coupled to a target. Also included is a rotary-to-linear interface disposed between the rotary linkage assembly and the sensor and configured to convert rotational motion of the rotary linkage assembly to linear motion.
摘要:
A sensor arrangement for sensing a rotation angle on a rotating component in a vehicle includes a first measurement transmitter. The first measurement transmitter is coupled at a periphery with a predefined first transmission ratio to the rotating component. The sensor arrangement includes a second measurement transmitter coupled at the periphery with a predefined second transmission ratio to the rotating component. The first and second measurement transmitters are mounted on a common axis of rotation. The first and second measurement transmitters generate, in conjunction with a corresponding first and second to measurement recorder, data configured to determine the current rotation angle of the rotating component.
摘要:
A system having a position sensing algorithm for determining a position of an electro-mechanical actuator (EMA) stroke includes a first rotary component supported for rotation about a first axis, and a second rotary component supported for rotation about a second axis. A first rotary encoder may be configured to generate an output based on an angular position of the first rotary component, and a second rotary encoder may be configured to generate an output based on an angular position of the second rotary component. The first and second rotary components may define a ratio such that the first and second rotary encoders generate unique combinations of outputs for an entire stroke of an EMA. A decoder may be provided having a position sensing algorithm that determines a position of the EMA stroke based on the ratio between first and second rotary components and outputs from first and second encoders.