摘要:
The embodiments of the invention are directed to a synthetic ceramic comprising pyroxene-containing crystalline phase, a clast, and a glass phase, wherein at least a portion of the synthetic ceramic is plastically deformable in a certain temperature range. Other embodiments of the invention relate to a method of making a synthetic ceramic, comprising heating a green ceramic material to 900-1400° C., to a temperature sufficient to initiate partial melting of at least a portion of the green ceramic material, transferring the heated green ceramic material to a press, pressing the heated green ceramic material in a die at 1,000 to 10,000 psi, and transferring the heated, pressed green ceramic material to a furnace for cooling to form the synthetic ceramic.
摘要:
A method for manufacturing sharp spine-shaped projections on ceramic includes forming projections by applying a first soil water on the outside of the half-dried ceramic, forming projection roots; and growing projections by applying a second soil water on a plurality of the projection roots fifty to one hundred times using the brush and letting the projections dry at 15˜20° C., and 60˜70% of relative humidity for 15˜25 minutes in the shade after the application. Bright and mysterious various ceramic patterns are achieved by controlling water content of a first soil water to control projections density, controlling the number of a second soil water applications to control projections' size, selecting the direction of applications to form projections bent toward various directions and mixing pigments with soil water at proper time with proper mixing ratios to form projections with various colors.
摘要:
There is provided a method for manufacturing a silicon carbide based honeycomb structure, the method using, as a part of a starting material, a recycled raw material recycled from a recovered material generated in a process for manufacturing the silicon carbide based honeycomb structure and derived from a starting material for a silicon carbide based honeycomb structure; wherein the recycled raw material is pulverized to have an average particle size of 10 to 300 μm. According to the present invention, structure defects such as voids or coarse particles, which have been problems upon manufacturing a silicon carbide based honeycomb structure, are hardly formed, and a silicon carbide based honeycomb structure having excellent strength and uniform heat conductivity can be obtained. In addition, since a once kneaded material is used as a part of a starting material, the time for kneading can be shortened.
摘要:
An alumina composite sintered body 1 in which fine particles 2 are dispersed in the crystal grains 4 and/or at the crystal grain boundaries 3 of an alumina sintered body obtained by sintering alumina crystal grains 4; an evaluation method thereof; and a spark plug using the alumina composite sintered body 1. Arbitrary regions in the cross-section of the alumina composite sintered body 1 are taken as analysis surfaces, and when the cross-sectional areas of the fine particles 2 contained in each analysis surface are measured, the ratio of the cross-sectional areas occupying in the area of the analysis surface is from 1 to 20%; when the cross-sectional areas of the fine particles 2 contained in each of analysis surfaces adjacent to each other are measured, and the cross-sectional area is converted into a circle having the same area, the diameter of the circle is from 0.1 to 4 μm; and when the concentration A (wt %) of the fine particles 2 contained in each analysis surface is compared with the concentration B (wt %) of the fine particles 2 used at the production, the difference between the concentration A and the concentration B is within ±20 wt %.
摘要:
The invention relates to a ceramifying composition for forming a fire resistant ceramic under fire conditions the composition comprising: (i) at least 10% by weight of mineral silicate; (ii) from 8% to 40% by weight of at least one inorganic phosphate that forms a liquid phase at a temperature of no more than 800° C.; and (iii) at least 15% by weight based on the total weight of the composition of a polymer base composition comprising at least 50% by weight of an organic polymer.
摘要:
A refractory system for glass melting furnaces includes alumina, zirconia, and silica mixed with a silica binder. The refractory may be formed as refractory blocks or directly onto the wear portion of a glass melting furnace. The refractory may be formed using casting, pumping, or shotcreting methods.
摘要:
The present invention provides a porous ceramic heating element wherein 0.08 to 1.00 wt % of a foaming agent is added in 99.00 to 99.92 wt % of a mixture of an inorganic material, a binder, a conductive material, a hardener, a bonding agent and a dispersion medium and mixed with the mixture. According to the porous ceramic heating element, the bonding strength of porous foam formed in the ceramic heating element becomes strong, thereby providing an effect that the entire structure is hardened.
摘要:
A glass-ceramic composition contains first ceramic particles principally containing forsterite; second ceramic particles principally containing at least one selected from the group consisting of calcium titanate, strontium titanate, and titanium oxide; and borosilicate glass particles containing about 3% to 15% lithium oxide, about 20% to 50% magnesium oxide, about 15% to 30% boron oxide, about 10% to 45% silicon oxide, about 6% to 20% zinc oxide, 0% to about 15% aluminum oxide, and at least one additive selected from the group consisting of calcium oxide, barium oxide, and strontium oxide on a weight basis. The content of the borosilicate glass particles is about 3% or more; the lower limit of the content of the additive is about 2%; and the upper limit of the additive content is about 15%, about 25%, or about 25% when the additive is calcium oxide, barium oxide, or strontium oxide, respectively, on a weight basis.
摘要:
A method for producing a honeycomb structure using, as a part of a starting material, a recycled raw material recycled from a recovered material which is produced in the production process of the honeycomb structure and originates from the starting material for the honeycomb structure, and further provides the honeycomb structure. The recycled raw material is ground so that it has an average particle diameter of 10–2000 μm and contains 10% or less by weight of particles having an average particle diameter of 2800 μm or more.