Abstract:
A ceramic product and a method of producing the ceramic product produced by pretreating the feedstock from at least of iron/steel recovery, recovery of at least one non-ferrous material, sieving, crushing, milling, aging, and thermal treatment, receiving as a first powder a first recovered material from the pretreating, receiving as a second powder a second recovered material from the pretreating, combining the first and second powders with water to form at least one of an extrudable paste and a granulated mixture, forming a green body from the at least one of the extrudable paste after extrusion and the granulated mixture; drying the green body, firing the green body to form the ceramic product, and cooling the ceramic product.
Abstract:
An ultra-lightweight, high strength ceramic proppant made from mixture of naturally occurring clays, preferably porcelain clay, kaolin and/or flint-clay, earthenware clay or other naturally occurring clays having an alumina content between about 5.5% and about 35%. The proppant has an apparent specific gravity from about 2.10 to about 2.55 g/cc, and a bulk density of from about 1.30 to about 1.50 g/cc. This ultra-lightweight proppant is useful in hydraulic fracturing of oil and gas wells, and has greater conductivity than sand at pressures up to 8,000 psi as measured by Stim-Lab after 50 hours and 275° F. on Ohio Sandstone, in the presence of deoxygenated aqueous 2% solution of KCI.
Abstract:
A bright noble metal preparation for firing on ceramic/porcelain surfaces at a minimum temperature of 900° C. The preparation has at least one organic noble metal compound including at least one of an organic gold, platinum, silver, and palladium compound, at least one flux that consists of organometallic compounds including Cr in the form of at least one organic compound, such that a Cr content is 0.01 to 1.0 mole per mole of noble metal, and at least one vehicle. The bright noble metal preparation is rhodium-free and has a noble metal content of 6 to 20 wt. %, based on the preparation.
Abstract:
A composite material with a porous inorganic-nonmetallic matrix and a second material, characterized in that said porous inorganic-nonmetallic matrix has a bending strength of ≧40 MPa as measured according to ISO 6 872; said second material is an organic material which at least partly fills the pores of said porous matrix; and said composite material has a modulus of elasticity, E, of ≧25 GPa as measured according to ISO 10 477.
Abstract:
A method for manufacturing sharp spine-shaped projections on ceramic includes forming projections by applying a first soil water on the outside of the half-dried ceramic, forming projection roots; and growing projections by applying a second soil water on a plurality of the projection roots fifty to one hundred times using the brush and letting the projections dry at 15˜20° C., and 60˜70% of relative humidity for 15˜25 minutes in the shade after the application. Bright and mysterious various ceramic patterns are achieved by controlling water content of a first soil water to control projections density, controlling the number of a second soil water applications to control projections' size, selecting the direction of applications to form projections bent toward various directions and mixing pigments with soil water at proper time with proper mixing ratios to form projections with various colors.
Abstract:
The invention relates to a radiation-curable precious-metal preparation, in particular a bright-gold preparation, that contains—in addition to a gold compound, which in particular is soluble in the printing medium, and further customary organometallic compounds—a radiation—curable, in particular UV-curable, printing medium, the polymerisation being initiated by the UV radiation and proceeding in accordance with a cationic mechanism which may optionally be assisted by y process that takes place simultaneously in accordance with a radical mechanism. The invention also relates to a transfer picture containing the precious-metal preparation, and to a process for decorating substrates that are suitable for decoration firing by direct application/printing and indirect printing (decalcomania).
Abstract:
Use in the treatment of ceramic materials for obtaining an easy stain removal, of mono- and bifunctional (per)fluoropolyether derivatives having the following structures: [Rf—CFY-L-O]mP(O)(O−Z+)3-m (A) (O−Z+)2P(O)[O-L-YFC—O—Rf—CFY-L-O—P(O)(O−Z+)]m′-[O-L-YFC—O—Rf—CFY-L-O]P(O)(O−Z+)2 (B) Rf—CFY-L-W (C) W-L-YFC—O—Rf—CFY-L-W (D) wherein m′ is an integer from 0 to 20, preferably from 0 to 4; L is an organic group selected from —CH2-(OCH2CH2)n—, —CO—NR′—(CH2)q—, with R′=H or C1–C4 alkyl group; n=0–8, preferably 1–3, q=1–8, preferably 1–3; Z=H, alkaline metal or NR4 group with R=H or C1–C4 alkyl group; Y=F, CF3; m=1,2,3, preferably 1,2; W is a —Si(R1)α(OR2)3-α group with α=0,1,2, R1 and R2 equal to or different from each other are C1–C6 alkyl groups, optionally containing one or more ether O, C6–C10 aryl groups, C7–C12 alkyl-aryl or aryl-alkyl groups.
Abstract:
New decorating materials suitable for the decoration of ceramic materials comprise a lead-free glass flux and at least one pigment. The glass flux comprises two lead-free glass compositions. One of the two glass compositions comprises, in weight percent, SiO2: 45 to 60%, Al2O3: 5 to 20%, B2O3: 15 to 30%, and one or more alkali metal oxides: 5 to 10%, provided that Li2O is contained in an amount of 2% or more, with the proviso that the total amount of said oxides is 90% or more of the total weight of the composition. The other of the two glass compositions comprises, in weight percent, SiO2: 60 to 75%, Al203: 5 to 20%, at least one of MgO, CaO, ZnO: 5 to 20% in total, and one or more alkali metal oxides: 0.5 to 5%, provided that Li2O is contained in an amount of 0.5% or more, with the proviso that the total amount of said oxides is 90% or more of the total weight of the composition.
Abstract translation:适用于陶瓷材料装饰的新装饰材料包括无铅玻璃熔剂和至少一种颜料。 玻璃熔剂包含两种无铅玻璃组合物。 两种玻璃组合物中的一种以重量%计含有SiO 2:45至60%,Al 2 O 3 3:5至20% ,B 2 O 3:15〜30%,一种或多种碱金属氧化物:5〜10%,条件是Li 2 O 含量为2%以上,条件是所述氧化物的总量为组合物总重量的90%以上。 两种玻璃组合物中的另一种以重量百分比计包含SiO 2:60至75%,Al 2 O 3 3:5至20 %,MgO,CaO,ZnO中的至少一种总计为5〜20%,一种或多种碱金属氧化物为0.5〜5%,条件是Li 2 O 2的含量为 0.5%以上,前提条件是所述氧化物的总量为组合物总重量的90%以上。
Abstract:
Ceramic media made using ceramic components comprising from 5 to 60% by weight of spodumene and 95 to 40 wt % of other ceramic-forming components comprising clay and feldspar have a reduced tendency to shrink upon firing to form the media and improved physical properties.
Abstract:
Ceramic mass transfer media suitable for use in thermal regenerative oxidizers made using a mixture of a clay, talc and optionally a dolomitic limestone have enhanced resistance to environments containing halogens and hydrogen halides.