Abstract:
The present disclosure relates to a method and an apparatus for coding data to be transmitted in a communication system, and more particularly, to a method and an apparatus for generating a sequence for a polar code for use in a communication system and a method and an apparatus for transmitting data using the same. The method according to the embodiment of the present disclosure is a method for transmitting data using a polar code including: generating a single polar code sequence for transmitting the data; coding the data using the generated single polar code sequence; and transmitting the polar-coded data.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An apparatus and a method for channel encoding and decoding in a communication or broadcasting system is provided. According to the present disclosure, the method for channel encoding in a communication or broadcasting system includes determining a block size Z, and performing encoding based on the block size and a parity check matrix corresponding to the block size, in which the block size is included in any one of the plurality of block size groups and the parity check matrix is different for each block size group.
Abstract:
A method and apparatus are provided for recovering data efficiently even when data loss has occurred over a channel or network. The packet transmission method includes arranging a first transmission packet in a source symbol in a first region of a source block; arranging a second transmission packet in a space starting with an empty space of a last source symbol where the first transmission packet is arranged, remaining after arranging the first transmission packet; arranging information related to the second transmission packet in a second region of the source block; performing Forward Error Correction (FEC) encoding on the source block; and transmitting the encoded source block.
Abstract:
A method for encoding and decoding information data using a polar code is provided. The method for encoding includes segmenting information data into a plurality of first packets, generating a plurality of second packets corresponding to the plurality of first packets by adding a corresponding packet Cyclic Redundancy Check (CRC) code to each of the plurality of first packets, fragmenting each of the plurality of second packets into a plurality of data blocks, polar code encoding each of the plurality of data blocks included in a corresponding second packet of the plurality of second packets, and generating a plurality of third packets corresponding to the plurality of second packets by concatenating each polar code encoded data block included in the corresponding second packet. The method for decoding includes decoding the third packet to obtain the information data based on the method for encoding.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method includes decoding a codeword corresponding to a preset decoding scheme to detect reliability information of each of codeword bits included in the codeword, wherein at least one of a number of quantization bits and a range of a quantization level used for detecting reliability information in the decoding scheme is determined based on a degree of a node on a bipartite graph of a low density parity check (LDPC) code.
Abstract:
A method and apparatus of transmitting/receiving a packet in a system are provided. The method includes dividing each symbol corresponding to each row of a two-dimensional array having a predetermined symbol size (T) as a width into a predetermined number (m) of regions, sequentially arranging source packets to be transmitted, starting from a first column of a first row of the two-dimensional array, setting a remaining part of a region in which last data of a source packet is allocated in a last row in which the source packet is arranged to a predetermined value, arranging a next source packet, starting from a starting point of a region next to the region in which the last data is allocated in the last row in which the source packet is arranged, constructing a source block by arranging all of the source packets in the two-dimensional array, FEC-encoding the source block, and transmitting the FEC-encoded source block.
Abstract:
A method for channel encoding in a communication or broadcasting system is provided. The method includes determining a block size Z, and performing encoding based on the block size and a first matrix corresponding to the block size, wherein the first matrix is determined based on information and a plurality of second matrices, and wherein a part of a column index indicating a position of a non-zero element in each row of the information includes an index according to mathematical expression 22 above.
Abstract:
A method and an apparatus are provided for transmitting and receiving signaling information in a digital broadcasting system. First signaling information for a physical layer is encoded to generate a first coded block. Second signaling information is encoded to generate a second coded block. A frame including the first coded block, the second coded block and at least one physical layer pipe (PLP) data is transmitted. The first signaling information has a fixed number of bits. The second signaling information has a variable number of bits. The first signaling information includes information indicating a forward error correction (FEC) type of the second signaling information for receiving the second information. The second signaling information includes information indicating an FEC type used for a related PLP data.
Abstract:
A method and an apparatus for transmitting and receiving a packet in a broadcasting and communication system are provided. The method includes splitting a source packet block including source packets into a plurality of source packet subblocks, converting the source packet subblocks to source symbol subblocks, respectively, generating a plurality of first repair symbol blocks by encoding the source packet subblocks using a first error correction code, configuring an error correction source packet by adding a source error correction payload IDentifier (ID) to source symbols included in the source symbol subblocks and configuring an error correction repair packet by adding a repair error correction payload ID to repair symbols included in the first repair symbol subblocks, and transmitting the error correction source packet and the error correction repair packet.
Abstract:
A packet transmission/reception method for use in a communication system is provided. The method includes generating control information corresponding to Forward Error Correction (FEC), acquiring at least one source packet to be protected using the FEC, generating at least one repair symbol with at least one repair FEC payload ID and at least one source FEC payload ID according to the at least one source packet and the control information, and transmitting the at least one source packet, the at least one repair symbol with the at least one repair FEC payload ID, and the at least one source FEC payload ID.