Abstract:
Techniques for improving the bandwidth performance of an antenna assembly in a mobile device are provided. An example of an apparatus according to the disclosure includes a dielectric substrate having a first area and a second area disposed around the first area, a first radiator disposed on a surface of the dielectric substrate in the first area, the first radiator being configured to transmit and receive radio signals at an operational frequency, and a plurality of metamaterial structures disposed in a periodic pattern on the surface of the dielectric substrate in the second area and within a near field of the first radiator, wherein a maximum width of each of the plurality of metamaterial structures is less than half of a wavelength of the operational frequency.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may be configured to be positioned in different possible physical configurations and may identify its current physical configuration based on a modem-based sensor. The UE may transmit a signal from a first antenna element and receive an echo of the signal at a second antenna element different than the first antenna element. The UE may then generate an echo signature for the echo of the signal and determine that the UE is in a first physical configuration (e.g., its current physical configuration) from the possible physical configurations by comparing the generated echo signature to a set of echo signatures that correspond to each of the possible physical configurations. Accordingly, based on the determined first physical configuration, the UE may perform an operating system function that corresponds to the first physical configuration.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a first device and a second device may communicate over a communication link using a set of antenna elements. The first device may identify one or more antenna array reconfiguration trigger conditions and may correspondingly select a first subset of antenna elements for operation. The first device may transmit a message to the second device including an indication of the antenna array reconfiguration at the first device, a request for the second device to modify the second device's antenna array configuration, or both. The second device may receive the message and, based on the indication or the request, may modify its antenna array configuration. For example, the second device may select a second subset of antenna elements based on the selected first subset of antenna elements. The devices may communicate using their modified antenna array configurations.
Abstract:
In conventional packaging strategies for mm wave applications, the size of the package is dictated by the antenna size, which is often much larger than the RFIC (radio frequency integrated circuit). Also, the operations are often limited to a single frequency which limits their utility. In addition, multiple addition build-up layers are required to provide the necessary separation between the antennas and ground layers. To address these issues, it is proposed to provide a device that includes an antenna package, an RFIC package, and an interconnect assembly between the antenna and the RFIC packages. The interconnect assembly may comprise a plurality of interconnects with high aspect ratios and configured to connect one or more antennas of the antenna package with an RFIC of the RFIC package. An air gap may be formed in between the antenna package and the RFIC package for performance improvement.
Abstract:
A high gain multi-beam aircraft blade antenna of an air-to-ground antenna systems includes multiple columnar matrix antenna elements housed within a blade. The elements are arranged to create independently steerable directed beams. A first independently steerable beam is used to provide communication. A second independently steerable beam is used to simultaneously search other signals.
Abstract:
Methods, systems, and apparatuses are described for wireless communication using the mmW spectrum. In particular, antenna structures may include arrays of antenna elements to deal with line-of-sight issues. Further, antenna structures may be configured to produce a beam (e.g., signal) that is relatively narrow and has a relatively high gain to deal with losses, such as mentioned above. Still further, antenna structures may be configured to provide beam steering (e.g., beamforming) capability. Such antenna structures may be designed to be relatively compact to deal with the limited real estate available on modern wireless communication devices (e.g., cellular telephones).
Abstract:
Methods, systems, and apparatuses are described for wireless communication using the mmW spectrum. In particular, antenna structures may include arrays of antenna elements to deal with line-of-sight issues. Further, antenna structures may be configured to produce a beam (e.g., signal) that is relatively narrow and has a relatively high gain to deal with losses, such as mentioned above. Still further, antenna structures may be configured to provide beam steering (e.g., beamforming) capability. Such antenna structures may be designed to be relatively compact to deal with the limited real estate available on modern wireless communication devices (e.g., cellular telephones).
Abstract:
Disclosed is a wideband antenna comprising a dielectric-loaded cavity-backed patch antenna driven with a stripline. The antenna includes a dielectric resonator. The stripline feeds a probe disposed within the dielectric resonator. The probe emits EM radiation, which is coupled to the patch antenna for transmission.
Abstract:
A high gain multi-beam aircraft blade antenna of an air-to-ground antenna systems includes multiple columnar matrix antenna elements housed within a blade. The elements are arranged to create independently steerable directed beams. A first independently steerable beam is used to provide communication. A second independently steerable beam is used to simultaneously search other signals.
Abstract:
Methods, systems, and devices for wireless communications are described. A codebook adaptation may be performed for a flexible user equipment (UEs) to determine a codebook for a physical configuration of the UE. For example, if the UE determines that the physical configuration does not correspond to a pre-loaded codebook in its memory, the UE may provide information about the physical configuration to a base station to determine a corresponding codebook. Additionally, the UE may request that the base station provide channel information to assist with the codebook determination. In some cases, this request may indicate for the base station to allocate a specific number of channel state information reference signal symbols that the UE can use for the codebook determination. Additionally or alternatively, the UE may generate the codebook internally and then signal to the base station a request for a beam refinement procedure with the generated codebook.