Abstract:
Methods in a multiple-cell cellular network that implements iterative coordinated beamforming (I-CBF) algorithms with limited cooperation from adjacent nodes (base stations and/or mobile stations) may jointly determine transmit beamforming vectors and receive combining vectors to increase sum throughput. The transmit beamforming vectors and receive combining vectors can be determined based on a performance metric, such as by maximizing SINR (signal-to-interference-and-noise ratio) for each mobile station in the network, maximizing SLNR (signal-to-leakage-and-noise ratio) for each base station in the network, or minimizing SMSE (sum mean square error). The algorithms may be performed to update vectors synchronously. In other cases, the algorithms may be performed to update vectors asynchronously.
Abstract:
A user equipment (UE) determines to activate a data session. The UE configures a data session activation request message to include an indication of an association with communication sessions of a given type (e.g., delay-sensitive communication sessions), and then transmits the data session activation request message to an access network. The access network determines to establish an aggressive paging cycle of a downlink channel for the UE based in part upon receiving a message (e.g., which can be different than the data session activation request message) that conveys the indication of the association to the access network. The access network sends at least one instruction for facilitating an allocation of the aggressive paging cycle to the UE, and the UE receives the at least one instructions and monitors the downlink channel accordingly.
Abstract:
A method of performing interference cancellation (IC) in a wireless communication device having a receiver comprising at least a primary receiver chain and a diversity receiver chain includes determining an interference level of a transmitted signal on the receiver; determining whether the interference level is within a predetermined range; selecting a first mode of operation if the interference level is within a predetermined range; and selecting a second mode of operation if the interference level is not within the predetermined range. The first mode includes receiving, at the primary receiver chain, a first signal corresponding to the transmitted signal; receiving, at the diversity receiver chain, a second signal corresponding to the transmitted signal for providing to an IC circuit; generating, at the IC circuit, an output signal based on the second signal; and generating a cancellation signal based on the output signal and the first signal.
Abstract:
An embodiment is directed to an application server configured to set-up a communication session within a wireless communications system. The application server receives, from a session originator, a request to initiate the communication session with a set of session targets, and then transmits one or more call announcement messages for announcing the communication session to the set of session targets. The application server determines information associated with a probability that the set of session targets will fail to accept the announced communication session, and/or delay information associated with when call responses will arrive from the set of session targets in response to the one or more call announcement messages. The application server selectively grants a floor of the communication session to the session originator based on the determined information.
Abstract:
A system, method, and computer device that allow a wireless communication device to selectively bundle messages in an access channel communication packet being sent to another computer device on the wireless communication network, such as a base station are disclosed. The bundled messages are typically sent in response to a request sent to the wireless communication device for response to a specific event, such as the setup of a group communication call. The receiving computer device determines if the access channel communication packet contains data indicating one or more bundled messages are therewithin such that resources only then will expended to review the bundled messages to check for the availability of the requested resources.
Abstract:
In a network node, wireless device, or both, a method for controlling activation or deactivation of a small cell activity of a portable multi-purpose wireless device in a wireless communications network may include determining a geographic location of a portable multi-purpose wireless device. The device may be capable of two or more different states of small cell activity, including an activated state, a deactivated state, or a latent state. The method may include controlling a current one of the two or more different states of the small-cell capability of the portable multi-purpose wireless device, based at least in part on the geographic location. The network node, the wireless device, or both may activate or deactivate the small cell activity, or place it into a latent state, based on additional factors. In addition to its small cell capabilities, the wireless device may perform user function unrelated to the wireless network.
Abstract:
A method of performing interference cancellation (IC) in a wireless communication device having a receiver comprising at least a primary receiver chain and a diversity receiver chain includes determining an interference level of a transmitted signal on the receiver; determining whether the interference level is within a predetermined range; selecting a first mode of operation if the interference level is within a predetermined range; and selecting a second mode of operation if the interference level is not within the predetermined range. The first mode includes receiving, at the primary receiver chain, a first signal corresponding to the transmitted signal; receiving, at the diversity receiver chain, a second signal corresponding to the transmitted signal for providing to an IC circuit; generating, at the IC circuit, an output signal based on the second signal; and generating a cancellation signal based on the output signal and the first signal.
Abstract:
Methods and apparatuses for multicasting within a wireless communications system are disclosed. In one embodiment a method of multicasting within a wireless communications system operating in accordance with a given wireless communication protocol includes monitoring multicast messages associated with a given multicast session in a first sector. A handoff occurs from the first sector to a second sector. It is determined whether the second sector is transmitting multicast messages associated with the given multicast session. Then, based on the determination, a registration request for the given multicast session within the second sector is transmitted on a reverse link access channel in an earlier slot than a next designated slot for registration requests as defined by the wireless communication protocol.
Abstract:
Methods, systems, and devices for facilitating mobility between flexible bandwidth systems and other bandwidth systems are provided. These tools and techniques that provide mobility between different bandwidth systems may facilitate supporting circuit-switched (CS) services, such as CS voice services. Some embodiments provide for determining flexible bandwidth capable devices, such as user equipment. Some embodiments involve core network redirection where a core network may direct the handling of circuit-switched services when a flexible bandwidth system does not support the CS services. Some examples provide for radio access network determined handling of CS services when a flexible bandwidth system may not support the CS services. Some embodiments provide for transitioning to a flexible bandwidth system. Some embodiments provide for transitioning from flexible bandwidth systems to non-flexible bandwidth systems that have no support for some or all CS services, other flexible bandwidth systems, and/or systems that natively support CS voice services.
Abstract:
Apparatus and methods are disclosed that provide various incentive schemes for owners of low-power base stations to allow others nearby to use their base station, enabling offloading of some users from a nearby macrocell, thus helping improve overall network performance. For example, a “win-win” scenario might exist when a sharing opportunity at a low-power base station overlaps with a sharing opportunity at the neighboring macrocell. During this overlap, when the low-power base station provides access to its air interface to one or more UEs outside of a set of UEs associated with the low-power base station, an incentive credit may be received. Incentive credits can take various forms, and in some examples, may be in an amount that is a function of an amount of contribution to the network resulting from the provision of access to the air interface.