Abstract:
A wireless communication device includes communication interface configured to receive and transmit signals and a processor configured to generate and process such signals. The communication interface of the wireless communication device is configured to receive a first signal from a first other wireless communication device, and the processor of the wireless communication device is configured to process the first signal to determine one or more concurrent transmission parameters. The processor of the wireless communication device is configured to generate the second signal based on the one or more concurrent transmission parameters and direct the communication interface to transmit the second signal to a second other wireless communication device during receipt of the first signal from the first other wireless communication device. The wireless communication device may be configured to make such concurrent transmissions based on one or more considerations such as the power level of the first signal.
Abstract:
Methods and systems for processing signals in a receiver are disclosed herein and may comprise receiving spatially multiplexed signals via M receive antennas. A plurality of multiple data streams may be separated in the received spatially multiplexed signals to detect MIMO data streams. Each of the MIMO data streams may correspond to a spatially multiplexed input signal. Complex phase and/or amplitude may be estimated for each detected MIMO data streams utilizing (M-1) phase shifters. Complex waveforms, comprising in-phase (I) and quadrature (Q) components for the MIMO data streams within the received spatially multiplexed signals may be processed and the processed complex waveforms may be filtered to generate baseband bandwidth limited signals. Phase and/or amplitude for one or more received spatially multiplexed signals may be adjusted utilizing the estimated complex phase and amplitude. Phase and/or amplitude may be adjusted continuously and/or at discrete intervals.
Abstract:
Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications. In accordance with wireless communications, a signal (SIG) field employed within such packets is distributed or partitioned into at least two separate signal fields (e.g., SIG A and SIG B) that are located in different portions of the packet. A first of the SIG fields includes information that may be processed and decoded by all wireless communication devices, and a second of the SIG fields includes information that is specific to one or more particular wireless communication devices (e.g., a specific wireless communication device or a specific subset of the wireless communication devices). The precise locations of the at least first and second SIG fields within a packet may be varied, including placing a second of the SIG fields (e.g., including user-specific information) adjacent to and preceding a data field in the packet.
Abstract:
Aspects of a method and system for channel estimation in a MIMO communication system with multiple RF chains for WCDMA/HSDPA may comprise receiving a plurality of communication signals from a plurality of transmit antennas. A plurality of vectors of baseband combined channel estimates may be generated based on phase rotation of the received plurality of communication signals. A matrix of processed baseband combined channel estimates may be generated based on the generated plurality of vectors of baseband combined channel estimates. A plurality of amplitude and phase correction signals may be generated based on the generated plurality of vectors of baseband combined channel estimates. An amplitude and a phase of at least a portion of the received plurality of communication signals may be adjusted based on the generated plurality of amplitude and phase correction signals, respectively.
Abstract:
Beamforming feedback frame formats within multiple user, multiple access, and/or MIMO wireless communications. A transmitting wireless communication device (TX) transmits a sounding frame to one or more receiving wireless communication devices (RXs) using one or more antennae and one or more clusters. Any antenna/cluster combination may be employed in communications between TXs and RXs. The one or more RXs receive/process the sounding frame to determine a type of beamforming feedback frame to be provided to the TX. Any one of a variety of beamforming feedback frame types and a types of information may be contained within a respective beamforming feedback frame including various characteristics of the respective communication channel between the TX and each of the various RXs. A common beamforming feedback frame format may be supported and employed by all such wireless communication devices (e.g., TX and RXs) when performing MU-MIMO operation such as in accordance with IEEE 802.11ac/VHT.
Abstract:
Scheduled clear to send (CTS) for multiple user, multiple access, and/or MIMO wireless communications. Before sending transmissions, a request to send (RTS)/clear to send (CTS) exchange takes place between a transmitting wireless communication device and multiple receiving wireless communication devices may take place therein. The transmitting wireless communication device (e.g., an AP) may generate and transmit a multi-user request to send (mRTS) frame to a number of receiving wireless communication devices (e.g., STAs). The mRTS frame can include information and instructions therein to direct the manner by which all or a subset of the receiving wireless communication devices are to provide CTS responses back to the transmitting wireless communication device. The mRTS frame may be an OFDMA frame, a MU-MIMO frame, or a combination thereof. The CTS responses may be received in accordance with any one or combination of OFDM signaling, OFDMA signaling, and MU-MIMO signaling.
Abstract:
A transceiver includes a receiver section and a transmitter section. The receiver section converts an inbound Multiple Frequency Bands Multiple Standards (MFBMS) signal into a down converted signal, wherein the inbound MFBMS signal includes a desired signal component and an undesired signal component. In addition, the receiver section determines spectral positioning of the undesired signal component with respect to the desired signal component and adjusts at least one of the MFBMS signal and the down converted signal based on the spectral positioning to substantially reduce adverse affects of the undesired signal component on the desired signal component to produce an adjusted signal. The transmitter section converts an outbound symbol stream into an outbound MFBMS signal.
Abstract:
Explicit feedback format within single user, multiple user, multiple access, and/or MIMO wireless communications. A beamformer provides a first communication to a beamformee, and based thereon, the beamformee may ascertain certain characteristics associated with the type and format of feedback to be provided to the beamformee via a second communication from the beamformee to the beamformer. For example, the first communication may include indication of a current operational mode, such as whether it is in accordance with single-user multiple input multiple output (SU-MIMO) or multi-user multiple-input-multiple-output (MU-MIMO). Also, the first communication may indicate a requested steering matrix's rank to be employed in accordance with subsequent beamforming by the beamformer. Also, additional information such as that pertaining to per-tone SNR values for each respective space-time stream, per-tone or per-sub-band eigen-values, the particular channel width being employed (e.g., 20, 40, 80, or 160 MHz), etc. may be included within the second communication.
Abstract:
A multi-user super-frame (MU-SF), as controlled by a MU-SF owner, is used to govern the manner by which various wireless communication devices have access to the communication medium. When various wireless communication devices operate within a wireless communication system, communication medium access can be handled differently for wireless communication devices having different capabilities. Per the MU-SF, those having a first capability may get medium access in accordance with a first operational mode (e.g., carrier sense multiple access/collision avoidance (CSMA/CA)), while those having a second capability may get medium access in accordance with a second operational mode (e.g., scheduled access). The respective durations for each of the first operational mode and the second operational mode within various MU-SFs need not be the same; the respective durations thereof may be adaptively modified based on any number considerations.
Abstract:
A wireless device includes processing circuitry, a receiver section, a transmitter section, and an antenna. The processing circuitry determines a set of information signals of a RF Multiple Frequency Bands Multiple Standards (MFBMS) signal. The receiver section down-converts a portion of the RF MFBMS signal by one or more respective shift frequencies to produce a corresponding baseband/low Intermediate Frequency (BB/IF) information signal from which the processing circuitry extracts data. The transmitter section converts a respective BB/IF information signal received from the processing circuitry by a respective shift frequency to produce a corresponding RF information signal and a combiner that combines the RF information signals to form a RF MFBMS signal. The receiver section and the transmitter section include ADCs and/or DACs, respectively, that are adjustable based upon characteristics of the RF MFBMS signal, the BB/IF MFBMS signal, and/or based upon signals carried therein, e.g., modulation type, SNR requirements, etc.