Abstract:
A control circuit with a high voltage sense device. In one embodiment, a circuit includes a first transistor disposed in a first substrate having first, second and third terminals. A first terminal of the first transistor is coupled to an external voltage. A voltage provided at a third terminal of the first transistor is substantially proportional to a voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is less than a pinch-off voltage of the first transistor. The voltage provided at the third terminal of the first transistor is substantially constant and less than the voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is greater than the pinch-off voltage of the first transistor. The circuit also includes a control circuit disposed in the first substrate and coupled to the third terminal of the first transistor. The circuit further includes a second transistor disposed in a second substrate. A first terminal of the second transistor coupled to the external voltage.
Abstract:
A control circuit with a high voltage sense device. In one embodiment, a circuit includes a first transistor disposed in a first substrate having first, second and third terminals. A first terminal of the first transistor is coupled to an external voltage. A voltage provided at a third terminal of the first transistor is substantially proportional to a voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is less than a pinch-off voltage of the first transistor. The voltage provided at the third terminal of the first transistor is substantially constant and less than the voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is greater than the pinch-off voltage of the first transistor. The circuit also includes a control circuit disposed in the first substrate and coupled to the third terminal of the first transistor. The circuit further includes a second transistor disposed in a second substrate. A first terminal of the second transistor coupled to the external voltage.
Abstract:
Various integrated circuit devices, in particular a junction field-effect transistor (JFET), are formed inside an isolation structure which includes a floor isolation region and a trench extending from the surface of the substrate to the floor isolation region. The trench may be filled with a dielectric material or may have a conductive material in a central portion with a dielectric layer lining the walls of the trench. Various techniques for terminating the isolation structure by extending the floor isolation region beyond the trench, using a guard ring, and a forming a drift region are described.
Abstract:
An isolated CMOS pair of transistors formed in a P-type semiconductor substrate includes an N-type submerged floor isolation region and a filled trench extending downward from the surface of the substrate to the floor isolation region. Together the floor isolation region and the filled trench form an isolated pocket of the substrate which contains a P-channel MOSFET in an N-well and an N-channel MOSFET in a P-well. The substrate does not contain an epitaxial layer, thereby overcoming the many problems associated with fabricating the same.
Abstract:
Isolated CMOS transistors formed in a P-type semiconductor substrate include an N-type submerged floor isolation region and a filled trench extending downward from the surface of the substrate to the floor isolation region. Together the floor isolation region and the filled trench form an isolated pocket of the substrate which contains a P-channel MOSFET in an N-well and an N-channel MOSFET in a P-well. The substrate does not contain an epitaxial layer, thereby overcoming the many problems associated with fabricating the same.
Abstract:
Various integrated circuit devices, including a lateral DMOS transistor, a quasi-vertical DMOS transistor, a junction field-effect transistor (JFET), a depletion-mode MOSFET, and a diode, are formed inside an isolation structure which includes a floor isolation region and a trench extending from the surface of the substrate to the floor isolation region. The trench may be filled with a dielectric material or may have a conductive material in a central portion with a dielectric layer lining the walls of the trench. Various techniques for terminating the isolation structure by extending the floor isolation region beyond the trench, using a guard ring, and a forming a drift region are described.
Abstract:
A high voltage insulated gate field-effect transistor includes an insulated gate field-effect device structure having a source and a drain, the drain being formed with an extended well region having one or more buried layers of opposite conduction type sandwiched therein. The one or more buried layers create an associated plurality of parallel JFET conduction channels in the extended portion of the well region. The parallel JFET conduction channels provide the HVFET with a low on-state resistance.
Abstract:
The present invention discloses a power device with integrated power transistor and Schottky diode and a method for making the same. The power device comprises a power transistor having a drain region, a Schottky diode in the drain region of the power transistor, and a trench-barrier near the Schottky diode. The trench-barrier is provided to reduce a reverse leakage current of the Schottky diode and minimizes the possibility of introducing undesired parasitic bipolar junction transistor in the power device.
Abstract:
A semiconductor device includes a III-nitride substrate, a first III-nitride epitaxial layer coupled to the III-nitride substrate and having a mesa, and a second III-nitride epitaxial layer coupled to a top surface of the mesa. The semiconductor device further includes a III-nitride gate structure coupled to a side surface of the mesa, and a spacer configured to provide electrical insulation between the second III-nitride epitaxial layer and the III-nitride gate structure.
Abstract:
A method for fabricating an edge termination structure includes providing a substrate having a first surface and a second surface and a first conductivity type, forming a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the substrate, and forming a second GaN epitaxial layer of a second conductivity type opposite to the first conductivity type. The second GaN epitaxial layer is coupled to the first GaN epitaxial layer. The method also includes implanting ions into a first region of the second GaN epitaxial layer to electrically isolate a second region of the second GaN epitaxial layer from a third region of the second GaN epitaxial layer. The method further includes forming an active device coupled to the second region of the second GaN epitaxial layer and forming the edge termination structure coupled to the third region of the second GaN epitaxial layer.