摘要:
An energy store is provided having a first electrode, a second electrode, an electrolyte in between, a first redox pair having a first oxidation reactant and a first oxidation product, and a housing, wherein a fluidic redox pair is present in the housing and comprises a fluidic oxidation reactant and a fluidic oxidation product, wherein during the discharge of the energy store, the fluidic oxidation product is reduced, and wherein during the charging of the energy store, the fluidic oxidation reactant is oxidized, wherein the fluidic redox pair in the housing is gaseous, and a pump or a compressor is adapted such that the fluidic redox pair within the housing is held at a pressure which is above the ambient pressure outside the housing. A method for charging or discharging an energy store is also provided.
摘要:
A method for operating an electronic system with a dongle is provided. In some embodiments, the method includes receiving system information from system components. The method further comprises continuing or ceasing to operate the electronic system based upon the system information; and writing system information to the dongle.
摘要:
A method of determining a distribution of electrolytes in a flow battery includes providing a flow battery with a fixed amount of fluid electrolyte having a common electrochemically active specie, a portion of the fluid electrolyte serving as an anolyte and a remainder of the fluid electrolyte serving as a catholyte. An average oxidation state of the common electrochemically active specie is determined in the anolyte and the catholyte and, responsive to the determined average oxidation state, a molar ratio of the common electrochemically active specie between the anolyte and the catholyte is adjusted to increase an energy discharge capacity of the flow battery for the determined average oxidation state.
摘要:
A flow battery system includes a first tank including a hydrogen reactant, a second tank including a bromine electrolyte, and at least one cell including a first electrolyte side operably connected to the first tank and a second electrolyte side operably connected to the second tank. The battery system further includes a direct connection line directly connecting the first tank and the second tank and configured such that the hydrogen reactant passes between the first tank and the second tank.
摘要:
A flow battery system and method of operating the system minimizes performance losses. The flow battery system includes at least one cell, a first tank including a liquid electrolyte, a pump operably connected to the first tank and to the at least one cell, and a second electrolyte tank operably connected to the at least one cell. The flow battery system further includes a memory including program instructions stored therein, at least one sensor configured to a generate at least one signal associated with a sensed condition of the battery system, and a controller operably connected to the at least one sensor, the pump, and the memory and configured to execute the program instructions to determine a dead zone condition exists based upon the at least one signal, and control the pump to pulse flow of the liquid electrolyte to the at least one cell based upon the determination.
摘要:
The present disclosure relate to a method for operating a redox flow battery, which includes the steps of discharging the redox flow battery having an anode electrolyte and a cathode electrolyte when a volume difference between the anode electrolyte and the cathode electrolyte is within 20% of a total volume of the anode electrolyte and the cathode electrolyte, while maintaining an open circuit voltage of lower than 1.3 V/cell, and moving the anode electrolyte and/or the cathode electrolyte so that the volume difference is 2% or less between the anode electrolyte and the cathode electrolyte in the redox flow battery after the discharging.
摘要:
This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
摘要:
A device for producing electrolyte flow in a flow-assisted battery comprises a flow assisted battery, a powering device located on a dry side of a battery housing, and an impeller assembly located on a wet side of the battery housing. The flow assisted battery comprises a battery housing, an anode, a cathode and an electrolyte solution, where the anode, the cathode and the electrolyte solution are disposed within the battery housing. The impeller assembly comprises: a shaft, an impeller, and one or more interior magnets, and the powering device and the impeller assembly are magnetically coupled through the battery housing.
摘要:
A hydrophilic cross-linked polymer obtainable by copolymerisation of hydrophobic and hydrophilic monomers that give a cross-linked hydrophilic polymer on polymerisation; a monomer including a strongly ionic group; and water is useful as the membrane in an assembly that can be used in an electrolyter or fuel cell.More generally, a membrane electrode assembly comprises electrodes and an ion-exchange membrane which comprises a hydrophilic polymer including a strongly ionic group.A method for producing a membrane electrode assembly comprising electrodes and an ion-exchange membrane, comprises introducing between the electrodes a material or materials from which the membrane can be formed, and forming the membrane in situ.
摘要:
Provided are compositions having the formula MnTi(L1)(L2)(L3) wherein L1 is a catecholate, and L2 and L3 are each independently selected from catecholates, ascorbate, citrate, glycolates, a polyol, gluconate, glycinate, hydroxyalkanoates, acetate, formate, benzoates, malate, maleate, phthalates, sarcosinate, salicylate, oxalate, a urea, polyamine, aminophenolates, acetylacetone or lactate; each M is independently Na, Li, or K; n is 0 or an integer from 1-6. Also provided are energy storage systems.