Abstract:
An analog input signal is dithered using a dithering sequence and then partially chopped using a chopping sequence. The dithered and partially chopped signal is then digitized by analog-to-digital converter (ADC) slices operating in alternating fashion, and the resulting digitized signals are adjusted according to the dithering sequence and the chopping sequence to compensate for gain and voltage offset errors of the ADC slices.
Abstract:
Provided is an apparatus for converting a continuous-time, continuously variable signal into a sampled and quantized signal, which includes an input line for accepting an input signal, multiple processing branches coupled to the input line, and an adder coupled to outputs of the plurality of processing branches. Each of the processing branches includes a sampling/quantization circuit and a digital bandpass interpolation filter having an input coupled to an output of the sampling/quantization circuit. The digital bandpass interpolation filters in different ones of the processing branches have frequency responses that are centered at different frequencies. The digital bandpass interpolation filter in at least one of the processing branches includes: (i) a quadrature downconverter, (ii) a first lowpass filter and a second lowpass filter, (iii) a first interpolator and a second interpolator, each having an input for inputting a variable interpolant value, and (iv) a quadrature upconverter.
Abstract:
The present disclosure relates to the field of background estimation in a time-interleaved analog-to-digital converter (ADC). More specifically, the present disclosure relates to systems and methods for background estimation of offset and gain errors in a time-interleaved ADC based on sample count. The error estimation unit of the time-interleaved ADC system includes a counting unit, a subtractor and an integrator. The method for estimating an offset error in a time-interleaved ADC includes determining signs of the signals and outputting corresponding values by the counting unit. The values are further compared and integrated to estimate the offset error. The method for estimating a gain error in a time-interleaved ADC includes determining the absolute values of the signals and comparing the absolute values with a predetermined threshold value. The comparison results are further integrated to estimate the gain error.
Abstract:
A test and measurement instrument including a splitter configured to split an input signal having a particular bandwidth into a plurality of split signals, each split signal including substantially the entire bandwidth of the input signal; a plurality of harmonic mixers, each harmonic mixer configured to mix an associated split signal of the plurality of split signals with an associated harmonic signal to generate an associated mixed signal; and a plurality of digitizers, each digitizer configured to digitize a mixed signal of an associated harmonic mixer of the plurality of harmonic mixers. A first-order harmonic of at least one harmonic signal associated with the harmonic mixers is different from an effective sample rate of at least one of the digitizers.
Abstract:
Systems and methods in accordance with embodiments of the invention utilize a CS architecture based on a sub-linear time recovery process (with reduced memory requirements). In several embodiments, a novel structured measurement matrix is exploited during signal acquisition allowing the use of a recovery process based on relatively simple computational primitives making it more amenable to implementation in a fully-integrated form. One embodiment of the invention includes an analog front end configured to receive an analog input signal, and CS sampling circuitry connected to an output of the analog front end and configured to generate a plurality of measurements using a structured measurement matrix, where each row of the structured measurement matrix is generated using a different predetermined check node. In addition, the CS sampling circuitry is configured to generate the plurality of measurements at a rate that is less than the Nyquist rate of the analog input signal.
Abstract:
A method for improving bandwidth of an oscilloscope involves, in preferred embodiments, the use of frequency up-conversion and down-conversion techniques. In an illustrative embodiment the technique involves separating an input signal into a high frequency content and a low frequency content, down-converting the high frequency content in the analog domain so that it may be processed by the oscilloscope's analog front end, digitizing the low frequency content and the down-converted high frequency content, and forming a digital representation of the received analog signal from the digitized low frequency content and high frequency content.
Abstract:
An apparatus for measuring a high speed signal may comprise a plurality of Analog-Digital converters (AD converter) that are arranged in parallel to each other to sample an input signal at different frequencies; a plurality of frequency synthesizers configured to provide each AD converter with a different sampling frequency; a signal processor configured to receive an output of the plurality of AD converters to reconstruct the input signal; and/or a controller configured to receive and process a trigger signal.
Abstract:
There is disclosed current-mode time-interleaved sampling circuitry configured to be driven by substantially sinusoidal clock signals. Such circuitry may be incorporated in ADC circuitry, for example as integrated circuitry on an IC chip. The disclosed circuitry is capable of calibrating itself without being taken off-line.
Abstract:
A two-channel time-interleaved analog-to-digital converter (TI-ADC) for communication signals offers a significant increase in the available sample rate of ADCs. Its performance is degraded by timing and gain mismatches. Both timing and gain mismatches are corrected in the digital data section of a two-channel TI-ADC for band-pass input signals. This is a realistic communications system scenario as modern system designs lean towards having the ADC interface with intermediate frequency (IF) signal in the analog section of a digital receiver rather than in the DC centered, analog down converted, in-phase and quadrature pair.
Abstract:
A test and measurement instrument including a splitter configured to split an input signal having a particular bandwidth into a plurality of split signals, each split signal including substantially the entire bandwidth of the input signal; a plurality of harmonic mixers, each harmonic mixer configured to mix an associated split signal of the plurality of split signals with an associated harmonic signal to generate an associated mixed signal; and a plurality of digitizers, each digitizer configured to digitize a mixed signal of an associated harmonic mixer of the plurality of harmonic mixers. A first-order harmonic of at least one harmonic signal associated with the harmonic mixers is different from an effective sample rate of at least one of the digitizers.