Abstract:
Space charge effects in an ion implanter can be caused by the mutual repulsion of ions of a particular polarity in a beam of ions which tend to cause the beam to “blow up” and become uncontrollable. This occurs for example in the ion implanter along the path of the ion beam and in particular at regions of external electric field. Introducing into the ion beam a second polarity of ions space charge neutralises the ion beam.
Abstract:
An ion implanter is provided for implanting ions in a workpiece. The ion implanter includes an apparatus for generating an ion beam and directing it toward a surface of a work piece and a plasma generator for generating plasma to neutralize the ion beam and the work piece surface. The plasma generator has a plasma generator chamber defined by walls, a relatively narrow outlet aperture for plasma produced in the chamber to leave the chamber to neutralize the beam and work piece surface, cathodes, and anodes spaced from the cathodes and from the walls of the chamber. The plasma generator also has magnets arranged within the plasma generator chamber, adjacent the chamber walls to generate a magnetic field to deflect primary electrons emitted from the cathode from directly reaching the anode. The plasma generator also features a conductive shield, positioned within the chamber between the anode and the magnets, the shield having an electric potential selected to deflect electrons, the magnetic field and the conductive shield effective during operation to cause electrons from the cathode to trace extended paths to ionize gas within the chamber to generate plasma before reaching the anode. A drift tube defined by walls through which the ion beam passes before reaching the workpiece is opened into by the aperture opens into the tube. A series of parallel, linear magnets are positioned perpendicular to the general path of the ion beam. The adjacent poles of adjacent magnets are of opposite polarity.
Abstract:
In a secondary ion mass spectrometer an aperture mask (3), which is not part of the secondary ion optics (5) of the spectrometer, is arranged very near to the surface of a specimen (1) to be analyzed, for example a semiconductor. The primary and secondary ions pass through the aperture (3A) in the aperture mask (3). The position of the specimen relative to the aperture mask dictates the location on the specimen (1) to be analyzed. The outer dimension of the mask is larger than the field of view of the secondary ion optics (5). Due to the masked region the fringe areas of the specimen are shielded ionoptically so that they cannot result in any falsification of the electric field. An electrical dc or ac potential can be applied to the mask (3) so that the electric field between the aperture (3A) and the specimen (1) can be additionally influenced. A contact device (3B) can be applied between the mask (3) and the specimen (1) for preventing electrical charging of the specimen (1).
Abstract:
In a secondary ion mass spectrometry (SIMS) method for analysis of a sample, in a first process step, the kinetic energy of the emitted primary ions emitted by a primary ion source (2) is set to a relatively low value, so that the surface of the sample (1) is enriched with primary ions, and erosion of the surface of the sample (1) essentially does not take place, and in a second process step, the kinetic energy of the primary ions emitted by one and the same primary ion source (2) is set to a relatively high value, so that the surface of the sample (1) can be eroded by the primary ion beam, where the formation of secondary ions in the second process step is promoted by the primary ions implanted during the first process step. Over and above this, targeted, locally differentiated enrichment of the sample surface ("chemical gating") can be carried out.
Abstract:
An ion implanting apparatus is capable of preventing occurrence of discharge flaws on a reverse side surface of a silicon wafer when the silicon wafer is ion-implanted at a temperature exceeding 300.degree. C. The ion implanting apparatus has an ion current of 10 mA to 100 mA, and an electron beam generating apparatus for irradiating an electron beam onto the reverse side surface of the silicon wafer. The electron beam is controlled so that current flowing between the wafer and the rotating disk supporting the wafer becomes substantially zero.
Abstract:
A plasma-enhanced electron shower (62) for an ion implantation system (10) is provided, including an extension tube (66) having a replaceable graphite inner liner (88). The inner liner is biased to a low negative potential (-6 V) to prevent low energy secondary electrons generated by the electron shower target from being shunted away from the wafer, keeping them available for wafer charge neutralization. The electrically biased inner surface is provided with serrations (126) comprising alternating wafer-facing surfaces (128) and target-facing surfaces (130). During operation of the electron shower (62), photoresist or other material which may sputter back from the wafer collects on the wafer-facing surfaces (128), rendering them non-conductive, while the target-facing surfaces (130) remain clean and therefore conductive. The conductive target-facing surfaces provide a shunt (low resistance) path to electrical ground for high energy electrons generated in the electron shower.
Abstract:
When neutralized plasma is generated, the cylindrical electrode 8 is set at a negative potential against the processing chamber 23 by the DC power source 18, so that ions 23 in the neutralized plasma can be collected at the cylindrical electrode 8. Electrons 24 equal to the collected ion charge can be supplied uniformly toward the ion beam 25. Therefore, by allowing the cylindrical electrode to collect ions, the ion collection area can be spread easily, and only by generating neutralized plasma of low density, a sufficient volume of ions can be collected surely from the plasma and a sufficient volume of electrons can be supplied to the ion beam 25 at the same time.
Abstract:
A vacuum processing method including the steps of generating plasma of a charge neutralizing medium by plasma generating means in a vacuum process chamber, and supplying the charge neutralizing medium in the plasma state to an object during transportion in the vacuum process chamber, thereby neutralizing a charge on the object. With this method, the object can be smoothly transported in a vacuum atmosphere after treatment and adhesion of particles to the object is prevented.
Abstract:
When a charged beam is irradiated on a sample, charge up of electric charge of the same polarity as that of the charged beam is built up on the sample surface. In order to neutralize the charge up electric charge, an apparatus for suppressing electrification of sample in charged beam irradiation apparatus is provided in which electric charge of opposite polarity to that of the charged beam is generated near the sample surface to neutralize the charged beam or charge up electric charge on the sample surface. The electric charge for neutralization is generated by admitting elecrtic charge from a plasma generation unit to the vicinity of the sample surface, ionizing gas generated from the sample surface by causing the charged beam to collide the gas or by irradiating electrons from an electron source on the sample surface. Especially when there is a possibility that impurities other than the electric charge for neutralization affect the sample adversely, an impurity generation source is blind folded with a cover so as not to be seen through from the sample and charged beam so that the impurities may be prevented from impinging upon the sample surface or intersecting the charged beam path.
Abstract:
There is disclosed an electron shower apparatus which eliminates the adverse effect of a magnetic field on electrons and which provides electrons in sufficient quantity when primary electrons having low energy are employed. In the apparatus, the magnetic field generated by a filament current is decreased or eliminated by pulsing the filament current or by passing a current opposite in direction to the filament current in the vicinity of the filament current.