Abstract:
A readback system includes a magnetic sensor that receives a sensor current. The magnetic sensor senses magnetic bits at a bit frequency and generates a sensor output. The readback system includes a channel circuit that modulates the sensor current at a modulation frequency higher than the bit frequency. The channel circuit samples the sensor output and combines multiple samples of the sensor output per magnetic bit into a combined sample output.
Abstract:
The magnetoresistance is measured for a magnetoresistive layered-structure, such as a spin valve film, prior to formation of an upper shield layer as well as patterning of a lower shield layer. The magnetic influence of the upper and lower shield layers can completely be eliminated during the measurement of the magnetoresistance. The magnetoresistive layered-structure is allowed to reliably receive the magnetic field over a wider range including a lower magnetic field range. It is accordingly possible to measure the magnetoresistance properly reflecting the magnetic characteristic of the magnetoresistive layered-structure. It is possible to find deficiency of a magnetoresistive read element at an earlier stage of the method.
Abstract:
In the thin-film magnetic head of the present invention, the length of each of a pinned layer and an antiferromagnetic layer in their contact area in the depth direction from a surface facing a medium is longer than the length of a free layer in the same direction. When the length of the pinned layer in the depth direction is set longer as such, the direction of magnetization of the pinned layer can be restrained from being tilted by disturbances. Also, the pinned layer and the antiferromagnetic layer have the same length in their contact area in the MR height direction, so that the pinned layer is in contact with the antiferromagnetic layer throughout its length in the MR height direction, thus raising the exchange coupling force, whereby the inclination in the direction of magnetization can be suppressed more effectively.
Abstract:
An extraordinary magnetoresistance (EMR) sensor has an antiferromagnetic/ferromagnetic exchange-coupled bilayer structure on top of the EMR active film. The ferromagnetic layer in the bilayer structure has perpendicular magnetic anisotropy and is exchange-biased by the antiferromagnetic layer. The antiferromagnetic/ferromagnetic bilayer structure provides a magnetic field perpendicular to the plane of the EMR active film to bias the magnetoresistance vs. field response of the EMR sensor. The ferromagnetic layer may be formed of any of the ferromagnetic materials useful for perpendicular magnetic recording, and is prepared in a way that its anisotropy axis is significantly out-of-plane. The antiferromagnetic layer is formed of any of the known Mn alloys, such as PtMn, NiMn, FeMn, IrMn, PdMn, PtPdMn and RhMn, or any of the insulating antiferromagnetic materials, such as those based on the cobalt oxide and nickel oxide antiferromagnetic materials.
Abstract:
A dual spin valve (SV) sensor is provided with a longitudinal bias stack sandwiched between a first SV stack and a second SV stack. The longitudinal bias stack comprises an antiferromagnetic (AFM) layer sandwiched between first and second ferromagnetic layers. The first and second SV stacks comprise antiparallel (AP)-pinned layers pinned by AFM layers made of an AFM material having a higher blocking temperature than the AFM material of the bias stack allowing the AP-pinned layers to be pinned in a transverse direction and the bias stack to be pinned in a longitudinal direction. The demagnetizing fields of the two AP-pinned layers cancel each other and the bias stack provides flux closures for the sense layers of the first and second SV stacks.
Abstract:
A method of initializing a magnetic sensor and storage system implementing such a magnetic sensor. The method includes heating and cooling dual antiferromagnetic layers in the presence of a magnetic field.
Abstract:
A method, medium, and apparatus to control a domain characteristic of a magneto-resistive (MR) sensor, e.g., included in a head of an HDD. The method may include maintaining the head in a non-flying state, applying temperature suitable for demagnetizing the MR sensor by driving a heater installed in the head, and cooling the MR sensor while applying a magnetic field for magnetizing the MR sensor. Accordingly, annealing can be performed in a fully assembled HDD by obtaining temperature suitable for annealing the MR sensor using a heater installed inside a head.
Abstract:
The magnetic head is formed with a narrow pole tip, and a pole tip heating element is fabricated to reduce the pole tip stress and increase its permeability, such that the magnetization switching speed of the pole tip is increased. The heating element is preferably electrically interconnected within the induction coil circuit of the magnetic head, such that the electrical current flowing through the induction coil also flows through the heating element. In a preferred embodiment, the heating element is fabricated above the second magnetic pole. The heating element is preferably formed with a resistance of approximately 0.2 to 1.0 ohms, such that the approximately 40 mA current that flows through the induction coil and the heating element creates a heating energy of the heating element of approximately 0.3 to 1.6 mW. The heating element can be comprised of a variety of materials such as Cu, W, NiFe, NiCr and IrRh.
Abstract:
A spin valve GMR sensor configured in a bridge configuration is provided. The bridge includes two spin valve element pairs. The spin valve elements include a free layer, a space layer, a pinned layer, and a bias layer. The bias layer includes a first bias layer and a second bias layer. The first and second spin valve element pairs are formed on separate metal layers and a current pulse is applied to the metal layers, which sets the direction of magnetization in the pinned layer of the first pair of spin valve elements to be antiparallel to the direction of magnetization in the pinned layer of the second pair of spin valve elements. The same effect can be accomplished by making the pinned layer substantially thicker than the second bias layer in the first spin valve element pair and the pinned layer is substantially thinner than the second bias layer in the second spin valve element pair and applying a magnetic field to the first and the second spin valve element pairs.
Abstract:
A method is provided for preserving the transverse biasing of a GMR (or MR) read head during back-end processing. In a first preferred embodiment, the method comprises magnetizing the longitudinal biasing layers of the read head in a transverse direction, so that the resulting field at the position of the transverse biasing layer places it in a minimum of potential energy which stabilizes its direction. The field of the longitudinal biasing layer is then reset to the longitudinal direction in a manner which maintains the transverse biasing direction. In a second embodiment, a novel fixture for mounting the read head during processing includes a magnetic portion which stabilizes the transverse bias of the read head. The two methods may be used singly or in combination.