Abstract:
Disclosed is a flash device which includes a mounting portion removably mounting a flash device on a photographic apparatus, a first base having the mounting portion, a second base mounted on the first base such that the second base can turn around a shaft located approximately parallel with an optical axis of the photographic apparatus, and a flashlight-irradiating unit mounted on the second base such that the flashlight-irradiating unit can turn around a shaft at least in a vertical direction which is orthogonal to the optical axis of the photographic apparatus and is approximately horizontal when the photographic apparatus is located with a horizontal position. In the flash device, the first base has an auxiliary light irradiation unit to irradiate a photographic subject with auxiliary light.
Abstract:
A lighting apparatus for use with a camera is described. In at least one embodiment, the apparatus comprises one or more light emitting diodes and one or more small batteries contained in a housing. A cylindrical piece extends from one side of the housing and is adapted to removeably secure the apparatus in a tripod mount on the camera. The apparatus is lightweight and compact and provides continuous illumination to a scene (opposed to the momentary illumination of a camera flash) to facilitate the recording of video.
Abstract:
A digital camera module (100) includes an image capturing apparatus (30) and a connecting structure (40). The image capturing apparatus includes an image sensing module (32) and a flashing module (34). The connecting structure includes a cover (42) configured for receiving the image sensing module therein, and a holding member (44) connected to the cover and configured for fixing the flashing module thereon at a height substantially equal to that of the image sensing module.
Abstract:
Disclosed is a flash device which includes a mounting portion removably mounting a flash device on a photographic apparatus, a first base having the mounting portion, a second base mounted on the first base such that the second base can turn around a shaft located approximately parallel with an optical axis of the photographic apparatus, and a flashlight-irradiating unit mounted on the second base such that the flashlight-irradiating unit can turn around a shaft at least in a vertical direction which is orthogonal to the optical axis of the photographic apparatus and is approximately horizontal when the photographic apparatus is located with a horizontal position. In the flash device, the first base has an auxiliary light irradiation unit to irradiate a photographic subject with auxiliary light.
Abstract:
A lighting effects system comprises an arrangement of lamp elements, such as light-emitting diodes (LEDs) or other light elements, on a panel or frame. The panel or frame may be relatively lightweight, and may include one or more circuit boards for direct mounting of the lamp elements. The panel or frame may have an opening through which a camera can view. A mounting bracket and assembly may be used for attaching the panel or frame to a camera. The lamp elements may be electronically controllable so as to provide differing intensity levels, collectively, individually, or in designated groups, and may be strobed, dimmed or otherwise controlled according to manually selected or programmable patterns. Different color lamp elements may be mounted on the same panel/frame, and, in particular, daylight and tungsten colored lamp elements may be mounted on the same panel/frame and their relative intensities selectively controlled by control circuitry.
Abstract:
A lighting apparatus for use with a camera is described. In at least one embodiment, the apparatus comprises one or more light emitting diodes and one or more small batteries contained in a housing. A cylindrical piece extends from one side of the housing and is adapted to removeably secure the apparatus in a tripod mount on the camera. The apparatus is lightweight and compact and provides continuous illumination to a scene (opposed to the momentary illumination of a camera flash) to facilitate the recording of video.
Abstract:
A method and apparatus for activating a remote light source in synchronization with an indication provided from a camera. A transducer is coupled to the external electrical connector of a conventional camera in order to convert the electrical signals that are output from the camera into an alternative form (e.g., optical signals). A different transducer is coupled to the external electrical connector of a remote light source, such as a photographic strobe. The light source transducer receives the signal from the camera transducer and converts the signal back into one or more conventional electrical signals to activate the remote light source. A light source activation signal and a light source modulation signal are multiplexed onto a single communication channel. A first indication is provided on the communication channel to activate the remote light source (i.e., cause the remote light source to emit light). A second indication is preferably provided on the communication channel in response to signals generated by a photo-detector within the camera. The second indication causes the remote light source to modulate its emission of light. The multiplexing camera transducer and demultiplexing light source transducer may be housed within the camera and remote light source, respectively. A Slave remote light source, coupled to a Slave light source transducer, is activated by detecting when either a Master remote light source or a local light source has been activated. An open end of an optical conductor that is coupled to a Slave light source transducer is directed in such a way as to be illuminated by the Master remote light source or local light source.
Abstract:
Apparatus for fixing a flash unit to a camera is disclosed. The apparatus includes mounting magnets and a structure for shielding the fields produced by the mounting magnets in a first undocked position and for exposing the fields produced by the mounting magnets in a second docked position. The apparatus further includes a mounting structure effective in the first undocked position for causing the flash unit to be moveably mounted to the camera and for leaving the shielding structure in the first undocked position and effective when the flash unit is moved to the second docked position for causing the shielding structure to be in the second docked position whereby the exposed fields produced by the mounting magnets cause the flash unit to be fixed to the camera.
Abstract:
A power bracket for carrying a camera and different accessories, such as a flash member, a power pack, and a modeling light member along with the pertinent cable connections and a switch. The base of the power bracket removably receives the camera and an arm of an L-shape member is mounted to the underside of an inclined portion of the base suspending the accessories at a forward position relative to the camera, thereby minimizing the interference between the accessories and the upper part of the camera. Also, the inclination of the inclined portion of the base permits a user to manipulate the lens found at the front of the camera. An elongated link assembly is adjustably mounted to the upper arm of the L-shape member and a flash holder arm is pivotally mounted thereto. The flash holder arm includes a flash shoe and the mounting member necessary to rive a shoe and the modeling light member, respectively. In this manner, a user can rotate flash holder arm 180 degrees or at any other between angle, as needed.
Abstract:
A strobe light mounting system for underwater cameras with arm segments clamped together with side clamps that grasp balls on the ends of the arm segments. The arm segments are rigid, light, and low in water resistance because they have four longitudinal channels pierced by mutually orthogonal transverse holes of large diameter so that longitudinal ribs are preserved at the maximum diameter of the arm segment. Water flows easily through the orthogonal holes permitting easy movement underwater.