Abstract:
The making and use of color microlenses in color image sensors and color display devices is described and claimed. The color microlenses combine the function of a colorless microlens and a color filter into a single structure simplifying the fabrication of, and increasing the reliability of display devices and image sensors using the described color microlenses.
Abstract:
The present invention describes the use of photonic crystals to form optical elements which function in optical apparatus in frequency ranges outside photonic band-gaps. Such optical elements may apply such optical properties as dispersion, anisotropy, and birefringence (all of which are exhibited by photonic crystals outside photonic band-gaps). A variety of optical apparatus, including spectrometers, radiation sources, and lasers are enabled by such optical elements.
Abstract:
Wavelength selection apparatus for use in various applications such as spectrometry, the demultiplexing/multiplexing of multiline laser beams, and so forth, includes an input prism and an output prism aligned along an optical axis, and at least one side mirror. A second side mirror spaced from the first side mirror on the opposite side of the optical axis may be provided, as well as end mirrors adjacent to the input and output prisms. An incoming beam incident upon the input prism is refracted so as to deflect and angularly disperse the various wavelengths present in the input beam, with the dispersing beam reflected from the first side mirror either directly to the output prism or with intermediate reflections from the second side mirror and the end mirrors before impinging upon the output prism. The output prism matches the input prism and deflects and recollimates the dispersed wavelengths to provide parallel output beams of different wavelengths spaced from one another. Selection of a desired wavelength in the output beam may be obtained by moving the input and output prisms with respect to each other axially until the desired output beam is moved to a position in which it passes through an aperture.
Abstract:
A high-sensitivity sensor configuration improves upon airborne hyperspectral and multispectral sensing, particularly for thermal/infrared military target detection and/or identification. The invention combines dispersive spectrometer and filtered TDI detector techniques to provide improved NESR through increased dwell time, along with interband temporal simultaneity and spatial registration. Embodiments relating to hyperspectral, multispectral, and dual-band arrangements are disclosed.
Abstract:
An image sensing apparatus of the type employing resolving and sensing means is provided with sensing means of selected size and geometry to allow approximation of arbitrary filter response. The sensing means of selected size and geometry may be incorporated into compact, self contained image resolving and sensing apparatus having a transparent substrate for resolving an incident image by refraction, diffraction or other suitable mechanism. The sensing means may be located directly on a surface of the transparent substrate. Logic and select circuitry may be integrally and simultaneously formed with the sensing means. The size and geometry of the sensing means may enable approximation to color inhibition and other effects to allow approximation of the spectral response of the human eye.
Abstract:
A compact, self contained image resolving and sensing apparatus of the type used in electronic imaging applications includes a plurality of sensing devices such as photodetectors formed on a transparent substrate capable of resolving a polychromatic image incident thereupon. The mechanism by which the substrate resolves the incident image may be refraction, diffraction or other suitable mechanism. The sensing devices are sized and located on the substrate such that they are capable of detecting one or more wavelength components of the resolved polychromatic image. Logic and select circuitry may be formed on the substrate generally contemporaneously and of similar materials as the sensing device.
Abstract:
Light containing blue, green and red radiation is passed through a colored original which is to be printed on color copy material. The transmitted light is spread out into a color spectrum which extends across a first wavelength range generally corresponding to the blue portion of the spectrum, a second wavelength range generally corresponding to the green portion of the spectrum and a third wavelength range generally corresponding to the red portion of the spectrum. The intensity of the transmitted light is measured throughout the spectrum and average of the resulting raw intensities are taken oer each of a series of wavelength intervals which are much shorter than the first, second and third ranges. The copy material has a gamma value for each wavelength interval and such gamma value represents the spectral sensitivity of the copy material in the corresponding interval. The average intensity for each wavelength interval is multiplied by the respective gamma value to yield a corrected intensity. The corrected intensities for each wavelength range are summed to generate first, second and third sums corresponding to the first, second and third ranges and respectively representing the blue, green and red densities of the original. The first, second and third sums are used to calculate the respective amounts of blue, green and red light required to print the original with a neutral gray density.
Abstract:
A method and apparatus for controlling the spectral components of a light beam are described. The apparatus comprises means (3-7) for generating a collimated light beam; means (9) for dispersing the collimated beam; a mask (1) including an aperture (2) the size of which is such that a portion of the dispersed beam passes through the aperture in use; and movement means (not shown) for causing relative transverse movement between the light beam and the aperture. A memory (not shown) is provided for storing in use a profile of the relative transverse movement between the light beam and the aperture (2) required to obtain a desired spectral response in the transmitted light beam, the movement means being responsive to the stored profile to cause relative transverse movement in accordance with the predetermined profile.
Abstract:
A method for focusing the horizontal and vertical components of energy reflected from an echelle grating which includes rotating the grating about a first axis substantially parallel to a prism face and rotating the grating about a second axis substantially normal to the first axis.