Abstract:
Biocompatible phase invertable proteinaceous compositions and methods for making and using the same are provided. The subject phase invertable compositions are prepared by combining a proteinaceous substrate and a cross-linker. The proteinaceous substrate includes one or more proteins and an adhesion modifier, and may also include one or more of: a pasticizer, a carbohydrate, or other modification agent. In certain embodiments, the cross-linker is a heat-treated dialdehyde, e.g., heat-treated glutaraldehyde. Also provided are kits for use in preparing the subject compositions. The subject compositions, kits and systems find use in a variety of different applications.
Abstract:
The present invention provides a hemostatic material which is excellent in hemostatic property, biodegradability and bioabsorbability, uniformity and stability of the quality, as well as reduces a risk of contamination with a pathogenic organism derived from an animal. The hemostatic material comprises a thrombin and a synthetic polypeptide capable of forming a triple helical structure. The polypeptide may show a peak of the molecular weight in the range from 5×104 to 100×104 in the molecular weight distribution. The polypeptide may contain at least a peptide unit represented by the formula: -Pro-X-Gly- (in the formula, X represents Pro or Hyp). The thrombin may be a recombinant. In the hemostatic material, the proportion of the thrombin may be about 0.1 to 500 units (U) relative to 1 mg of the polypeptide. The hemostatic material may further comprise a binder component having biodegradability and bioabsorbability. The hemostatic material may be formed on a substrate.
Abstract:
Described is a medically useful article comprising a three-dimensional body including one or more implantable substances, wherein the body defines one or more reservoirs for receiving amounts of a biocompatible wetting liquid. In certain embodiments the body is disruptable upon wetting with the biocompatible liquid to form a conformable implantable material such as a putty, paste or more flowable wetted implant material. Also described are methods for manufacturing such medical materials, and methods for using such medical materials to treat patients.
Abstract:
A hemostatic composition which comprises at least one procoagulant metal ion, such as silver (I) or mercury (II), and at least one procoagulant biopolymer, such as collagen, thrombin, prothrombin, fibrin, fibrinogen, heparinase, Factor VIIa, Factor VIII, Factor IXa, Factor Xa, Factor XII, von Willebrand Factor, a selectin, a procoagulant venom, a plasminogen activator inhibitor, glycoprotein IIb-IIIa, a protease, or plasma. The composition in the form of a paste, dough, glue, liquid, lyophilized powder or foam, may be provided, for application to a wound. A hemostatic device is also described which comprises a hemostatic composition as described above. The device may be in the form of, for example, a plug, bandage, gauze, cloth, tampon, membrane or sponge. Methods are also provided for prophylaxis or treatment of bleeding at a site by application to the site of the composition or device as described.
Abstract:
The invention provides methods and compositions that are useful for adhering biological and/or synthetic tissues, sealing fluid and/or gaseous leaks in biological and/or synthetic tissues, and preparing implants useful for delivery of a bioactive molecule such as a drug, for bulking applications, or for tissue prostheses. The present invention also relates to bio-erodable adhesive or occluding compositions and methods of using the same.
Abstract:
This invention is related to an adhesive composition which may be used to bond or seal tissue in vivo. The adhesive composition is readily formed from a two component mixture which includes a first part of a protein, preferably a serum albumin protein, in an aqueous buffer having a pH in the range of about 8.0-11.0 and a second part of a water-compatible or water-soluble bifunctional crosslinking agent. When the two parts of the mixture are combined, the mixture is initially a liquid which cures in vivo on the surface of tissue in less than about one minute to give a strong, flexible, pliant substantive composition which bonds to the tissue and is absorbed in about four to sixty days. The adhesive composition may be used either to bond tissue, to seal tissue or to prevent tissue adhesions caused by surgery.
Abstract:
Described are compositions, methods, and articles of manufacture for the closure of retinal breaks with a non-toxic polymer. Transformation to a gel-like coat is achieved by photochemical reactivity, chemical reactivity, and by physicochemical response.
Abstract:
Disclosed is a novel tissue adhesive technology comprising a combination of ultrasonically treated proteins including collagen and albumin which form a viscous material that develops adhesive properties when chemically cross-linked. A novel new cross-linking agent with surprisingly stable properties was developed in association with the tissue adhesive described and claimed herein and is considered to be within the scope of the present invention. This new cross-linking agent is a product of reacting glutaraldehyde with amino acids or peptides and allowing the reaction to proceed to completion. This chemical cross-linker is mixed with the ultrasonically treated proteins, allowed to react for a pre-determined time, then used to seal large surface areas of vigorously bleeding tissues including, but not limited to, the liver, lungs and major vascular systems in patients with and without bleeding disorders. This same tissue adhesive has proven to work well in sealing suture sites to prevent leakage.
Abstract:
Methods and products for rapidly sealing a fluid leak in a tissue are provided. A polymerizable protein is applied to a tissue having an opening which creates a fluid leak in the tissue, in order to seal the opening. The tissue area and opening coated with the polymerizable protein are exposed to an initiator in order to polymerize the covering in situ, and create a seal over the opening that prevents fluid leakage. The methods and products to the invention may be used, for example, to seal airholes in lung injuries and to seal anastomoses and suture lines for blood vessels.