Abstract:
A system includes a milking box stall of a size sufficient to accommodate a dairy livestock. The milking box stall comprises a front wall, a rear wall, a first side wall and a second side wall. The system further includes an equipment portion located adjacent to the rear wall. The equipment portion comprises a separation container for use with only the milking box stall and that is operable to receive milk from the dairy livestock to be discarded if it is determined to be bad milk. The equipment portion further comprises a receiver jar for use with only the milking box stall and that is operable to receive milk from the dairy livestock if it is determined to be good milk.
Abstract:
A milking robot comprises a robotic arm, a camera coupled to the robotic arm, a camera-facing nozzle coupled to the robotic arm, and a controller. The robotic arm extends in a longitudinal direction between the hind legs and from the rear of a dairy livestock located in a milking stall. The camera-facing nozzle sprays a protective layer of the camera with a cleanser. The controller communicates a signal instructing the camera-facing nozzle to spray the camera with cleanser.
Abstract:
In certain embodiments, a system comprises a milk collecting system, a teat cup holder, and a cleansing hose system. The milk collecting system comprises a teat cup, a milk collector, and a milking hose system connecting the teat cup to the milk collector. The teat cup holder stores the teat cup of the milk collecting system such that a nozzle of the teat cup holder substantially aligns with an opening of the teat cup. The cleansing hose system connects the nozzle of the teat cup holder to one or more cleanser sources and operable to backwash at least a portion of the milk collecting system by injecting a cleanser from one or more of the cleanser sources through the nozzle and into the teat cup.
Abstract:
A robotic attacher retrieves a preparation cup from the right side of an equipment area located behind a dairy livestock and attaches and detaches the preparation cup to the teats of the dairy livestock in sequence. The sequence comprises attaching and detaching the preparation cup to the left front teat, the right front teat, the right rear teat, and the left rear teat.
Abstract:
A system includes a milking box and a robotic attacher. The milking box has a stall to accommodate a dairy livestock. The robotic attacher extends under the dairy livestock and comprises a nozzle. The robotic attacher is operable to rotate such that, during a first operation, the nozzle is positioned generally on the bottom of the robotic attacher, and during a second operation, the nozzle is positioned generally on the top of the robotic attacher.
Abstract:
A method, comprises receiving a flow of milk at an inlet of a manifold. The inlet comprises a first end coupled to a hose that receives a flow of milk from a teat cup and a second end terminating in a chamber of the manifold. The manifold comprises one or more other inlets and a plurality of outlets. The plurality of outlets includes one or more milk collector outlets and one or more drain outlets. The method proceeds by causing the flow of milk to be directed to a corresponding milk collector outlet by causing a shut-off valve corresponding to the inlet to open, and by causing a drain valve corresponding to the inlet to close. The method concludes by causing the flow of milk to be directed to a corresponding drain outlet by causing the shut-off valve corresponding to the inlet to close, and by causing the drain valve corresponding to the inlet to open.
Abstract:
A system includes a three-dimensional camera and a processor communicatively coupled to the three-dimensional camera. The processor is operable to determine a first and second edge of a dairy livestock. The first edge includes an inner portion of a first hind leg and a first portion of an udder of the dairy livestock. The second edge includes an inner portion of a second hind leg and a second portion of the udder of the dairy livestock. The processor calculates a reference point associated with the udder of the dairy livestock based at least in part upon the first edge and the second edge. A robotic attacher moves toward the udder of the dairy livestock based at least in part upon the calculated reference point.
Abstract:
A milking robot comprises a frame that is movable along a guide track that is positioned adjacent to a rotary platform such that the frame can move in conjunction with the movement of the rotary platform. The milking robot further comprises a moveable arm having a first end that couples to the frame and a second end that extends in a longitudinal direction, and at least one gripper coupled to the movable arm at the second end. The gripper is extendable in the longitudinal direction of the movable arm.
Abstract:
A system includes a front wall, a rear wall opposite the front wall, and first and second side walls extending between the front wall and the rear wall. The first side wall includes a gate, and the second side wall is spaced apart from the first side wall such that the front wall, the rear wall, the first side wall, and the second side wall define a milking box stall that accommodates a dairy livestock. The system includes an equipment portion adjacent to the rear wall. It houses a separation container that receives milk to be discarded from the dairy livestock. The equipment portion further houses a robotic attacher that extends from behind and between the rear legs of a dairy livestock located within the milking box stall in order to attach milking equipment to the dairy livestock.
Abstract:
A system includes a carriage track positioned adjacent to a rotary milking platform, a robot carriage mounted to the carriage track, and a controller. The controller causes the robot carriage to move linearly along the carriage track in conjunction with a rotational movement of the rotary milking platform such that a first linear position of the robot carriage aligns with a first rotational position of a milking stall of the rotary milking platform and a second linear position of the robot carriage aligns with a second rotational position of the milking stall of the rotary milking platform.