Abstract:
A method for operating a base station in a wireless communication system in order to support a plurality of characteristics is provided. The method includes allocating resource periods for respective characteristics, transmitting system information including information on the characteristics, transmitting a reference signal with the characteristic corresponding to the relevant resource period through at least one of the resource periods, and receiving feedback information determining channel qualities for all of the characteristics.
Abstract:
A method for generating a decoding metric in a wireless communication system includes receiving an FQAM symbol and determining transmission probabilities of FQAM symbol candidates from a received value of the FQAM symbol, wherein the transmission probabilities of the FQAM symbol candidates are determined by multiplying a probability that a QAM symbol included in the FQAM symbol is mapped to each of candidate values in one frequency and a probability that a signal is not transmitted in the other at least one frequency. An apparatus in a wireless communication system for supporting FQAM, the apparatus comprising an RF processing unit configured to receive an FQAM symbol, and a modem configured to determine transmission probabilities of FQAM symbol candidates from a received value of the FQAM symbol.
Abstract:
A method and apparatus for transmitting and receiving a signal in a Near Field Communication (NFC) system are provided, in which a multi-frame is configured and a signal is transmitted in the multi-frame to a reception terminal. The multi-frame includes a discovery region, a paging region, at least two scheduling regions for indicating a plurality of different scheduling algorithms, and a traffic slot region. A transmission terminal transmits a signal for searching for a neighbor terminal in the discovery region, transmits a paging signal in the paging region, transmits information for a scheduling algorithm that is predetermined by the transmission terminal and the reception terminal in each of the scheduling regions, and transmits a scheduled signal in the traffic slot region according to the predetermined scheduling algorithm.
Abstract:
A method for supporting Time-Quadrature Amplitude Modulation (TQAM) in a wireless communication system includes generating a transmission symbol identified by a combination of a QAM symbol and a position of a time resource to which the QAM symbol is mapped, shifting at least one QAM symbol among QAM symbols contained in the transmission symbols with respect to a time axis, and readjusting a constellation point of the QAM symbol on the basis of a shifting quantity. A method for operating a receive end comprises receiving a reception symbol identified by a combination of a QAM symbol and a position of a time resource to which the QAM symbol is mapped, restoring at least one QAM symbol shifted in a transmit end for uniformizing of the time-axis distribution of QAM symbols contained in the reception symbols, generating decoding metrics for the reception symbol, and performing decoding the reception symbol using the decoding metric.
Abstract:
Provided is a method and apparatus for transmitting and receiving a Broadcast Channel (BCH) in a cellular communication system. The method for transmitting a BCH in a cellular communication system includes repeating symbols comprising information about the BCH, code-covering the repeated symbols with codes selected from a previously given code set, subcarrier-mapping the code-covered symbols, and transmitting the subcarrier-mapped symbols in one frame by using different beams corresponding to the selected codes. The codes are selected based on a number of repetitions, a cell identifier, and a beam index.
Abstract:
A method and an apparatus using beamforming in a wireless communication system are provided. The communication method includes detecting generation of uplink data to be transmitted from a Mobile Station (MS) to a Base Station (BS), and transmitting a scheduling request signal requesting uplink resource allocation in at least one channel region corresponding to uplink transmission and reception beams in an uplink resource area allocated to a scheduling request channel.
Abstract:
A method of supporting communication of a terminal in a first base station of a beamforming system is provided. The method includes determining an uplink control channel through which both the first base station and at least one second base station are able to receive signals, through cooperation with the at least one second base station, the first base station and the at least one second base station belonging to a cloud cell, and transmitting to the terminal information on the determined uplink control channel and frame information to establish relationships with the base stations included in the cloud cell for each transmit frame of a signal to be transmitted to the terminal from the base stations.
Abstract:
Provided is a method and apparatus for operating a control channel in a beamforming-based wireless communication system. The provided method includes acquiring information indicating a best Base Station (BS) receive beam for Uplink (UL) communication; determining a control channel region for UL control channels in a UL interval considering the best BS receive beam, the control channel region being a predetermined region that is mapped to the best BS receive beam; and exchanging information about the control channel between a BS and a Mobile Station (MS) through the control channel region.
Abstract:
An apparatus and method for selecting the best beam in a wireless communication system are provided. An operation of a Base Station (BS) includes repeatedly transmitting reference signals beamformed with a first width, receiving a feedback signal indicating at least one preferred-beam having the first width from at least one terminal, determining a direction range within which reference signals beamformed with a second width are to be transmitted and a transmission pattern, based on the at least one preferred-beam having the first width, repeatedly transmitting the reference signals beamformed with the second width within the determined direction range according to the transmission pattern, and receiving a feedback signal indicating at least one preferred-beam having the second width from the at least one terminal.
Abstract:
A base station and terminal use methods of obtaining synchronization and system information in a wireless communication system. An operation of a base station includes generating a synchronization signal to be transmitted through a Synchronization Channel (SCH), generating a broadcast signal to be transmitted through a Broadcast Channel (BCH), and transmitting repetitively the SCH and the BCH by performing beamforming on the channels with different transmission beams.