Abstract:
A method and apparatus for demapping a double squared quadrature amplitude modulated (DSQ) symbol is disclosed. One or more first log likelihood ratios (LLRs) are determined, for a first subset of constellation points of a corresponding DSQ constellation, using an LLR approximation. One or more second LLRs are determined, for a second subset of constellation points of the DSQ constellation, using a lookup table. The DSQ symbol is then demapped to one of a plurality of constellation points of the DSQ constellation based on the first and second LLRs. For some embodiments, the first subset of constellation points may correspond with an inner region of the DSQ constellation and the second subset of constellation points may correspond with an outer region of the DSQ constellation.
Abstract:
Methods, systems, and devices for wireless communications are described. An encoding device may encode a set of source symbols using one or more raptor codes to generate a first set of encoded symbols and may transmit the first set of encoded symbols to a decoding device. The decoding device may successfully recover a source symbol of the set of source symbols from the first set of encoded symbols and may transmit an indication of the source symbol to the encoding device. The encoding device may encode one or more source symbols of the set of source symbols using the one or more raptor codes to generate a second set of encoded symbols based on receiving the indication of the source symbol and may transmit the second set of encoded symbols to the decoding device.
Abstract:
Methods, systems, and devices for wireless communication are described. In some systems, a user equipment (UE) may transmit a sidelink message in accordance with one or more parameters associated with a priority of the sidelink message. The UE may determine a channel access priority class (CAPC) associated with the sidelink message based on the priority of the sidelink message. The UE may perform a listen-before-talk (LBT) procedure in accordance with the CAPC to gain access to a wireless channel for a channel occupancy time (COT). The UE may select a set of starting positions relative to the COT based on the priority, the CAPC, or both. The UE may transmit the sidelink message within the COT based on a starting position of the set of starting positions and the LBT procedure. The UE may perform a quantity of one or more retransmissions of the sidelink message based on the CAPC.
Abstract:
The disclosure relates in some aspects to information encoding. Information encoding may involve puncturing bits of a codeword or repeating bits of a codeword. The disclosure relates in some aspects to selecting a puncturing or repetition pattern. In some aspects, a puncture pattern for data encoding is selected based on a criterion that the output and the repetition input of an XOR are not erased. In some aspects, a repetition pattern for data encoding is selected based on a criterion that repetition not be applied for the output and the repetition input of an XOR.
Abstract:
Aspects of the disclosure relate to wireless communication devices configured to encode information blocks to produce code blocks and interleave the code blocks utilizing an interleaver including a plurality of rows and a plurality of columns, where the number of columns of the interleaver varies between the rows. In some examples, the interleaver includes a right isosceles triangle-shaped matrix of rows and columns. In other examples, the interleaver includes a trapezoid-shaped matrix of rows and columns.
Abstract:
Methods, systems, and devices for wireless communications are described. A base station may transmit an encoded transmission via a broadcast to multiple user equipment (UE). Subsequently, the multiple UEs may transmit assistance information to the base station based on attempting to decode the broadcasted encoded transmission. If the decoding is unsuccessful for at least one UE, the base station may then transmit an additional encoded transmission via a unicast or multicast message to the UEs that were unsuccessful. Additionally, the base station may transmit configuration information for the multiple UEs to receive the encoded transmissions and to transmit the assistance information. For example, the configuration information may include portion information for how long the encoded transmission is transmitted via the broadcast, via the unicast, when to transmit the assistance information, etc. In some cases, the configuration information may be based on UE metrics of the multiple UEs.
Abstract:
Aspects of the disclosure relate to wireless communication utilizing a modulation and coding scheme that selectively or dynamically applies probabilistically-shaped coding (PCS) to modulate a transmitted waveform. A communication device may determine whether to apply PCS. If PCS is to be applied, the device can encode the message based on a systematic code; and if PCS is not to be applied, the device can encode the message based on a non-systematic code. Other aspects, embodiments, and features are also claimed and described
Abstract:
Methods, systems, and devices for wireless communication at a user equipment (UE) are described. A UE may receive control signaling configuring at least a first UE operation mode and a second UE operation mode. The UE may transmit one or more uplink messages to a base station in the unlicensed radio frequency spectrum band using a first set of parameters according to the first UE operation mode. In some examples, the UE may receive a control message comprising an indication that the UE is to switch from communicating according to the first configured UE operation mode to communicating according to the second configured UE operation mode. The UE may then transmit, in response to the received indication, one or more uplink messages to the base station in the unlicensed radio frequency spectrum band using a second set of parameters according to the second UE operation mode.
Abstract:
Aspects of the disclosure relate to wireless communication with a waveform configured according to probabilistic constellation shaping in connection with modulation. A wireless transmission device may determine a sequence of amplitude symbols from a sequence of information bits using a distribution matcher (DM) configured for probabilistic amplitude shaping. The device may further apply error correction coding to encode an information block corresponding to at least a portion of the sequence of amplitude symbols. And the device may generate a sequence of output symbols for transmission based on the encoded information block. In various examples, the device may apply interleaving to one or more of the sequence of amplitude symbols, the information block, the encoded information block, or a combination of the sequence of amplitude symbols and the encoded information block, for the generating of the sequence of output symbols. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods and apparatus for constructing polar codes are provided. A transmitter determines at least one set of parameters corresponding to data to be transmitted, and a set of sorting indices corresponding to bits of the data to be transmitted based on the set of parameters, the set of sorting indices indicating a position set of the bits to be transmitted. The transmitter polar encodes the data based at least on the set of parameters and the set of sorting indices to generate a coded block of the data, and transmits the coded block of the data.