Abstract:
Systems and methodologies are described that facilitate transmitting positioning reference signals (PRS) differently for passive distributed elements. PRSs for passive distributed elements can be transmitted over disparate resources than those utilized for PRSs at a related access point, using different symbol sequences, and/or the like. In this regard, wireless devices can differentiate between PRSs from access points and those from passive distributed elements, which can mitigate confusion for processes involving such RSs, such as position determining. Alternatively, passive distributed elements can refrain from transmitting PRSs, and a corresponding access point can indicate to wireless devices to only determine positioning based on PRSs. Thus, the wireless devices can utilize the PRSs transmitted from the access point (and not other reference signals transmitted from the passive distributed element) to determine a position.
Abstract:
Techniques for communicating on multiple carriers in a wireless communication network are described. In an aspect, different transmit power levels may be used for different carriers to mitigate interference. A first base station may be assigned one or more carriers among multiple carriers available for communication. A second base station may be assigned one or more carriers not assigned to the first base station. Each base station may communicate on each assigned carrier at a first (e.g., full) transmit power level and may communicate on each unassigned carrier at a second (e.g., lower) transmit power level lower. The first and second base stations may belong in different power classes or support different association types. In another aspect, control information may be sent on a designated carrier to support communication on multiple carriers. In yet another aspect, a base station may broadcast bar information indicating the status of carriers.
Abstract:
Techniques for supporting communication in a heterogeneous network are described. In an aspect, communication in a dominant interference scenario may be supported by reserving subframes for a weaker base station observing high interference from a strong interfering base station. In another aspect, interference due to a first reference signal from a first station (e.g., a base station) may be mitigated by canceling the interference at a second station (e.g., a UE) or by selecting different resources for sending a second reference signal by the second station (e.g., another base station) to avoid collision with the first reference signal. In yet another aspect, a relay may transmit in an MBSFN mode in subframes that it listens to a macro base station and in a regular mode in subframes that it transmits to UEs. In yet another aspect, a station may transmit more TDM control symbols than a dominant interferer.
Abstract:
Systems and methodologies are described herein that facilitate interference measurement and reporting in a network multiple-in-multiple-out (N-MIMO) communication system. As described herein, a network device can measure and report interference corresponding to network nodes outside a designated set of nodes that can cooperatively serve the device. Respective interference reports can additionally identify dominant interfering nodes, correlation between transmit antennas of respective nodes, or the like. Subsequently, respective interference reports can be combined with per-node channel information to manage coordination and scheduling across respective network nodes. As further described herein, interference from a network node can be measured by observing reference and/or synchronization signals from the network node. To aid such observation, respective non-interfering network nodes can define null pilot intervals in which transmission is silenced or otherwise reduced. As additionally described herein, loading information broadcasted by respective interfering network nodes can be identified and utilized in connection with interference calculation.
Abstract:
Method, mobile device, computer program product, and apparatus for optimizing sensor reporting are described. A mobile device can measure radio frequency (RF) signal characteristics while receiving data from one or more mobile device sensors. The mobile device may determine its relative displacement between RF signal measurements. The mobile device can send a representation of the RF signal characteristics and the displacement data to one or more servers. The representation displacement data may include one or more reliability characteristics and/or a displacement reliability rating. A server can obtain the displacement data and RF signal characteristics to determine positioning of wireless transmitters in an environment and build a positioning database.
Abstract:
Method, hardware, device, computer program, and apparatus for positioning mobile devices in unmapped locations based on motion sensor and radio frequency measurements are described. A reference radio signal is received from a transmitter with an unknown absolute position and a reference range measurement is calculated. Mobile device motion sensor data is used to estimate a relative position of the mobile device. A sample radio signal is received from a transmitter with an unknown absolute position and a sample range measurement is calculated. The reference range measurement and the sample range measurement are compared. The estimated motion sensor based position is adjusted according to the result of the comparison.
Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or support one or more operations or techniques for selective crowdsourcing of location-related data, such as within an indoor or like environment, for example, for use in or with a mobile communication device.
Abstract:
Systems, apparatus and methods for deriving a heatmap in a server are presented. A heatmap is formed from sensor measurements and/or wireless signal strength measurements that have been grouped. Sensor measurements are paired or group into complementary sets thereby reducing sensor bias and/or system bias that is otherwise included because of sensor drift and unbalanced directional travel. Similarly, wireless signal strength measurements are paired or group into complementary sets also reducing system bias.
Abstract:
Techniques for sending signaling messages in a wireless communication network are described. In an aspect, a signaling message (e.g., a reduce interference request) may be sent by mapping it to at least one specific subcarrier among a set of subcarriers reserved for sending the signaling message. The at least one subcarrier may be selected based on the message value. A signal may be sent on the at least one subcarrier in multiple symbol periods to convey the signaling message. In another aspect, a reduce interference request may be sent based on an orthogonal resource among orthogonal resources available for sending reduce interference requests. In one design, an orthogonal sequence may be selected based on the request and may be spread across a resource segment. In another design, the reduce interference request may be processed to obtain modulation symbols, and each modulation symbol may be spread across multiple subcarriers in one symbol period.
Abstract:
Techniques for supporting peer-to-peer (P2P) communication and wide area network (WAN) communication are disclosed. In one aspect, a method operable by a network entity to facilitate peer-to-peer (P2P) communication in a wireless network includes designating a first group of subframes in a wide area network (WAN) uplink (UL) spectrum for WAN communication. The method includes designating a second group of subframes in the WAN UL spectrum for P2P communication. The method further includes allowing P2P mobile entities to use WAN physical layer channels in the second group of subframes to communicate P2P control information and P2P data.