Abstract:
A circuit layout methology is provided for eliminating the extra processing time and file-space requirements associated with the optical proximity correction (OPC) of a VLSI design. The methodology starts with the design rules for a given manufacturing technology and establishes a new set of layer-specific grid values. A layout obeying these new grid requirements leads to a significant reduction in data preparation time, cost, and file size. A layout-migration tool can be used to modify an existing layout in order to enforce the new grid requirements.
Abstract:
In one embodiment, a second metal line embedded in a second dielectric layer overlies a first metal line embedded in a first dielectric layer. A portion of the second dielectric layer overlying the first metal line is recessed employing a photoresist and the second metal line as an etch mask. A doped semiconductor spacer is formed within the recess to provide a resistive link between the first metal line and the second metal line. In another embodiment, a first metal line and a second metal line are embedded in a dielectric layer. An area of the dielectric layer laterally abutting the first and second metal lines is recessed employing a photoresist and the first and second metal lines as an etch mask. A doped semiconductor spacer is formed on sidewalls of the first and second metal lines, providing a resistive link between the first and second metal lines.
Abstract:
Methods for real-time contamination, environmental, or physical monitoring of a photomask. An attribute of a photomask is monitored using a sensor of an electronics package attached to the photomask. The methods further include generating one or more sensor signals relating to the monitored attribute with the sensor and transmitting the one or more sensor signals from the electronics package to a control system.
Abstract:
A complementary metal oxide semiconductor (CMOS) structure includes a semiconductor substrate having first mesa having a first ratio of channel effective horizontal surface area to channel effective vertical surface area. The CMOS structure also includes a second mesa having a second ratio of the same surface areas that is greater than the first ratio. A first device having a first polarity uses the first mesa as a channel and benefits from the enhanced vertical crystallographic orientation. A second device having a second polarity different from the first polarity uses the second mesa as a channel and benefits from the enhanced horizontal crystallographic orientation.
Abstract:
A double gated silicon-on-insulator (SOI) MOSFET is fabricated by forming epitaxially grown channels, followed by a damascene gate. The double gated MOSFET features narrow channels, which increases current drive per layout width and provides low out conductance.
Abstract:
A fin-type field effect transistor has an insulator layer above a substrate and a fin extending above the insulator layer. The fin has a channel region, and source and drain regions. A gate conductor is positioned over the channel region. The insulator layer includes a heat dissipating structural feature adjacent the fin, and a portion of the gate conductor contacts the heat dissipating structural feature. The heat dissipating structural feature can comprise a recess within the insulator layer or a thermal conductor extending through the insulator layer.
Abstract:
Disclosed is a structure and method for producing a fin-type field effect transistor (FinFET) that has a buried oxide layer over a substrate, at least one first fin structure and at least one second fin structure positioned on the buried oxide layer. First spacers are adjacent the first fin structure and second spacers are adjacent the second fin structure. The first spacers cover a larger portion of the first fin structure when compared to the portion of the second fin structure covered by the second spacers. Those fins that have larger spacers will receive a smaller area of semiconductor doping and those fins that have smaller spacers will receive a larger area of semiconductor doping. Therefore, there is a difference in doping between the first fins and the second fins that is caused by the differently sized spacers. The difference in doping between the first fins and the second fins changes an effective width of the second fins when compared to the first fins.
Abstract:
A circuit layout methology is provided for eliminating the extra processing time and file-space requirements associated with the optical proximity correction (OPC) of a VLSI design. The methodology starts with the design rules for a given manufacturing technology and establishes a new set of layer-specific grid values. A layout obeying these new grid requirements leads to a significant reduction in data preparation time, cost, and file size. A layout-migration tool can be used to modify an existing layout in order to enforce the new grid requirements.
Abstract:
A method for detecting semiconductor process stress-induced defects. The method comprising: providing a polysilicon-bounded test diode, the diode comprising a diffused first region within an upper portion of a second region of a silicon substrate, the second region of an opposite dopant type from the first region, the first region surrounded by a peripheral dielectric isolation, a peripheral polysilicon gate comprising a polysilicon layer over a dielectric layer and the gate overlapping a peripheral portion of the first region; stressing the diode; and monitoring the stressed diode for spikes in gate current during the stress, determining the frequency distribution of the slope of the forward bias voltage versus the first region current at the pre-selected forward bias voltage and monitoring, after stress, the diode for soft breakdown. A DRAM cell may be substituted for the diode. The use of the diode as an antifuse is also disclosed.
Abstract:
A field effect transistor is formed with a sub-lithographic conduction channel and a dual gate which is formed by a simple process by starting with a silicon-on-insulator wafer, allowing most etching processes to use the buried oxide as an etch stop. Low resistivity of the gate, source and drain is achieved by silicide sidewalls or liners while low gate to junction capacitance is achieved by recessing the silicide and polysilicon dual gate structure from the source and drain region edges.