-
公开(公告)号:US11873742B2
公开(公告)日:2024-01-16
申请号:US18164896
申请日:2023-02-06
申请人: Rondo Energy, Inc.
发明人: John Setel O'Donnell , Peter Emery von Behrens , Chiaki Treynor , Jeremy Quentin Keller , Matthieu Jonemann , Robert Ratz , Yusef Desjardins Ferhani
IPC分类号: F01K3/02 , H02M1/00 , F01K3/08 , F01K3/18 , F01K15/00 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04007 , B63H11/00 , F03G6/00 , F01K13/02 , F22B29/06 , F22B35/10 , H02J1/10 , H02J3/00 , H02J3/04 , F03D9/18 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04
CPC分类号: F01K3/02 , B63H11/00 , F01K3/08 , F01K3/186 , F01K13/02 , F01K15/00 , F03G6/071 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04037 , H01M8/04052 , H01M8/04074 , H02J1/102 , H02J3/00 , H02J3/04 , H02M1/0003 , H02M1/007 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04 , F03D9/18 , F28D2020/0004 , Y02E60/14
摘要: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
-
公开(公告)号:US11867095B2
公开(公告)日:2024-01-09
申请号:US18161834
申请日:2023-01-30
申请人: Rondo Energy, Inc.
发明人: John Setel O'Donnell , Peter Emery von Behrens , Chiaki Treynor , Jeremy Quentin Keller , Matthieu Jonemann , Robert Ratz , Yusef Desjardins Ferhani
IPC分类号: F01K3/02 , H02M1/00 , F01K3/08 , F01K3/18 , F01K15/00 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04007 , B63H11/00 , F03G6/00 , F01K13/02 , F22B29/06 , F22B35/10 , H02J1/10 , H02J3/00 , H02J3/04 , F03D9/18 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04
CPC分类号: F01K3/02 , B63H11/00 , F01K3/08 , F01K3/186 , F01K13/02 , F01K15/00 , F03G6/071 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04037 , H01M8/04052 , H01M8/04074 , H02J1/102 , H02J3/00 , H02J3/04 , H02M1/0003 , H02M1/007 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04 , F03D9/18 , F28D2020/0004 , Y02E60/14
摘要: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
-
公开(公告)号:US11867094B2
公开(公告)日:2024-01-09
申请号:US18117908
申请日:2023-03-06
申请人: Rondo Energy, Inc.
发明人: John Setel O′Donnell , Peter Emery Von Behrens , Chiaki Treynor , Jeremy Quentin Keller , Matthieu Jonemann , Robert Ratz , Yusef Desjardins Ferhani
IPC分类号: F01K3/02 , H02M1/00 , F01K3/08 , F01K3/18 , F01K15/00 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04007 , B63H11/00 , F03G6/00 , F01K13/02 , F22B29/06 , F22B35/10 , H02J1/10 , H02J3/00 , H02J3/04 , F03D9/18 , B63H11/12 , B63H11/14 , B63H1/12 , B63H11/16 , F01K11/02 , F01K19/04
CPC分类号: F01K3/02 , B63H11/00 , F01K3/08 , F01K3/186 , F01K13/02 , F01K15/00 , F03G6/071 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04037 , H01M8/04052 , H01M8/04074 , H02J1/102 , H02J3/00 , H02J3/04 , H02M1/0003 , H02M1/007 , B63H1/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04 , F03D9/18 , F28D2020/0004 , Y02E60/14
摘要: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
-
公开(公告)号:US11619144B2
公开(公告)日:2023-04-04
申请号:US17668310
申请日:2022-02-09
申请人: Rondo Energy, Inc.
发明人: John Setel O'Donnell , Peter Emery von Behrens , Chiaki Treynor , Jeremy Quentin Keller , Matthieu Jonemann , Robert Ratz , Yusef Desjardins Ferhani
IPC分类号: F01K3/02 , F01K3/08 , F01K3/18 , F01K15/00 , F28D20/00 , F03G6/00 , F01K13/02 , F22B29/06 , F22B35/10 , H02M1/00 , H01M8/04014 , H01M8/04029 , H01M8/04007 , B63H11/00 , H02J1/10 , H02J3/00 , H02J3/04 , F03D9/18 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04
摘要: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
-
公开(公告)号:US11598226B2
公开(公告)日:2023-03-07
申请号:US17668327
申请日:2022-02-09
申请人: Rondo Energy, Inc.
发明人: John Setel O'Donnell , Peter Emery von Behrens , Chiaki Treynor , Jeremy Quentin Keller , Matthieu Jonemann , Robert Ratz , Yusef Desjardins Ferhani
IPC分类号: H02J3/00 , H02J3/04 , H02M1/00 , B63H11/00 , F01K13/02 , F01K15/00 , F01K3/02 , F01K3/08 , F01K3/18 , F03G6/00 , F22B29/06 , F22B35/10 , F28D20/00 , H01M8/04007 , H01M8/04014 , H01M8/04029 , H02J1/10 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04 , F03D9/18
摘要: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
-
公开(公告)号:US11585243B2
公开(公告)日:2023-02-21
申请号:US17650522
申请日:2022-02-09
申请人: Rondo Energy, Inc.
发明人: John Setel O'Donnell , Peter Emery von Behrens , Chiaki Treynor , Jeremy Quentin Keller , Matthieu Jonemann , Robert Ratz , Yusef Desjardins Ferhani
IPC分类号: F01K3/02 , H02M1/00 , F01K3/08 , F01K3/18 , F01K15/00 , F28D20/00 , H01M8/04014 , H01M8/04029 , H01M8/04007 , B63H11/00 , F03G6/00 , F01K13/02 , F22B29/06 , F22B35/10 , H02J1/10 , H02J3/00 , H02J3/04 , F03D9/18 , B63H11/12 , B63H11/14 , B63H11/16 , F01K11/02 , F01K19/04
摘要: An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
-
公开(公告)号:US11519393B2
公开(公告)日:2022-12-06
申请号:US17422302
申请日:2020-01-13
申请人: Hydrostor Inc.
发明人: Cameron Lewis , Andrew McGillis
IPC分类号: F03G7/06 , F15B1/04 , F02C7/143 , F28D20/00 , F03D9/18 , B65G5/00 , F17C1/00 , F17C5/06 , F02C6/16 , F17C13/02
摘要: A compressed air energy storage system may have an accumulator and a thermal storage subsystem having a cold storage chamber for containing a supply of granular heat transfer, a hot storage chamber and at least a first mixing chamber in the gas flow path and having an interior in which the compressed gas contacts the granular heat transfer particles at a mixing pressure that is greater than the cold storage pressure and the hot storage pressure and a conveying system operable to selectably move the granular heat transfer particles from the cold storage chamber, through the first mixing chamber and into the hot storage chamber, and vice versa.
-
公开(公告)号:US11365720B1
公开(公告)日:2022-06-21
申请号:US17457517
申请日:2021-12-03
申请人: Michael Ross Adelman
发明人: Michael Ross Adelman
摘要: A Device to Enhance Radiant Transfer of Heat from the Earth to Outer Space comprising a collector of energy from a renewable energy source, a storage device for the collected electrical energy in a rechargeable battery, a radiant energy emitter plate consisting of an enclosure with supports, radiant energy emitter plate, plate heating elements, insulating elements for reduction of heat loss via conduction from the enclosure and insulating elements for reduction of heat loss via convection from the enclosure, temperature sensor, and a controller device for regulating the connection and flow of gathered energy from the collector to the storage device to the radiant energy emitter plate.
-
公开(公告)号:US11319875B2
公开(公告)日:2022-05-03
申请号:US16498613
申请日:2018-03-15
申请人: KOBE STEEL, LTD.
发明人: Yohei Kubo , Masaki Matsukuma , Yuji Matsuo , Takashi Sato , Ryo Nakamichi
摘要: In a main flow passage, a first heat exchanger, a first heat storage unit, a second heat exchanger, and a second heat storage unit are connected by a heating medium flow passage. The main flow passage allows a heating medium to be circulated. A sub flow passage includes a shortened flow passage which is a part of the heating medium flow passage and branches from the heating medium flow passage between the second heat exchanger and the second heat storage unit and extends to the first heat storage unit. The sub flow passage allows circulation of the heating medium between the first heat storage unit and the second heat exchanger. A first heating means in a middle of the shortened flow passage, the first heating means heating a passing heat medium, and a switching means conducting switching between the main flow passage and the sub flow passage are provided.
-
公开(公告)号:US11274792B2
公开(公告)日:2022-03-15
申请号:US16492401
申请日:2018-03-09
申请人: Hydrostor Inc.
发明人: Daniel Stradiotto , Cameron Lewis , Davin Young , Andrew McGillis
IPC分类号: F17C1/00 , F17C5/06 , F17C13/02 , F17C13/06 , F02C7/143 , F02C6/16 , F03D9/18 , F03D9/17 , B65G5/00 , F28D20/00
摘要: A thermal storage subsystem may include at least a first storage reservoir disposed at least partially under ground configured to contain a thermal storage liquid at a storage pressure that is greater than atmospheric pressure. A liquid passage may have an inlet connectable to a thermal storage liquid source and configured to convey the thermal storage liquid to the liquid reservoir. A first heat exchanger may be provided in the liquid inlet passage and may be in fluid communication between the first compression stage and the accumulator, whereby thermal energy can be transferred from a compressed gas stream exiting a gas compressor/expander subsystem to the thermal storage liquid.
-
-
-
-
-
-
-
-
-