Abstract:
Data are received at a receiving device from a server, where the data are encoded into one of a plurality of different versions, each version having a different fidelity level. A data stream having a buffer with an initial maximum window size for buffering received data is requested from the server, wherein the data stream initially has a first fidelity level. The maximum window size is managed to prevent the current window size from falling below a threshold that might trigger an adjustment by the server in the fidelity level of the data stream sent by the server, unless and until the accumulation of data in the buffer due to a decrease in the present processing capabilities of the controller of the receiving device falls below a threshold of processing power necessary for processing the data stream at the higher fidelity level for more than a transitory period of time.
Abstract:
A wireless device couples an electronic device employing a wired-link protocol to, for example, a wireless personal area network (WPAN). The wireless device comprises a wired interface configured for coupling to the electronic device, a wired transceiver coupled to the wired interface, the at least one wired transceiver configured for functioning as a terminus of a wired link coupled to the electronic device, and a wireless transmitter or transceiver coupled to the wired transceiver and configured for functioning as a terminus of a wireless link in the WPAN. The wireless device may be configured for coupling a plurality of dissimilar wired devices together via a wireless link.
Abstract:
A method of dynamically buffering content for providing a streaming service is provided. The method includes estimating a maximum amount of decrease in a network speed based on a result of measuring a network, and determining an amount of data to be buffered so that additional buffering, after playback of content is started, does not cause playback interruption, based on a maximum amount of decrease in the network speed, a total size of the content, a speed of playing the content, and a speed of receiving the content.
Abstract:
A wireless network node can include a wireless network antenna, a processor in communication with the wireless network antenna, and a non-transitory computer readable medium containing computer-executable code. The processor can be configured to calculate an initial buffer size. The processor can be configured to adjust the initial buffer size to a current buffer size based on a current network load.
Abstract:
A method and apparatus control delivery of media data in a transmission system. A method of operating a sending entity in the transmission system includes identifying a fixed delay associated with transmission of media data in the transmission system and sending information about the fixed delay as a requirement on a length of time after transmission that the media data is passed to an application layer component or presented to a user of a receiving entity. A method of operating a receiving entity in the transmission system includes receiving media data and information about a fixed delay associated with the media data and identifying a requirement on a length of time after transmission that the media data is passed to an application layer component or presented to a user from the information about the fixed delay.
Abstract:
Disclosed is a method and system for deep packet buffering on a switch core comprising an ingress and egress deep packet buffer and an external deep packet buffer.
Abstract:
A device may include a first line card and a second line card. The first line card may include a memory including queues. In addition, the first line card may include a processor. The processor may identify, among the queues, a queue whose size is to be modified, change the size of the identified queue, receive a packet, insert a header cell associated with the packet in the identified queue, identify a second line card from which the packet is to be sent to another device in a network, remove the header cell from the identified queue, and forward the header cell to the second line card. The second line card may receive the header cell from the first line card, and send the packet to the other device in the network.
Abstract:
A buffer space allocation method for a packet switch includes periodically performing a measurement process to obtain a plurality of measurement results at different times, each measurement result indicating a total size of accumulated packets in an output queue corresponding to one of a plurality of network ports of the packet switch, and adjusting a dedicated buffer space of the output queue according to the plurality of measurement results and a reserved space value for the dedicated buffer space.
Abstract:
A system and method for hierarchical adaptive dynamic egress port and queue buffer management. Efficient utilization of buffering resources in a commodity shared memory buffer switch is key to minimizing packet loss. Efficient utilization of buffering resources is enabled through adaptive queue limits that are derived from an adaptive port limit.
Abstract:
A method and apparatus for programmable buffer with dynamic allocation to optimize system throughput with deadlock avoidance on switches have been disclosed where a buffer availability is based on a programmable reservation size for dynamic allocation.