Abstract:
A method for transmitting an uplink signal at a User Equipment (UE) in a wireless communication system includes receiving, from a Base Station (BS), an uplink scheduling grant for multi-antenna transmission; transmitting the uplink signal precoded using precoding information included in the received uplink scheduling grant to the BS; and retransmitting the uplink signal to the BS according to Acknowledgment/Negative Acknowledgment (ACK/NACK) corresponding to the transmitted uplink signal. The retransmitted uplink signal is precoded using precoding information included in a most recent uplink scheduling grant or a predetermined precoding matrix if an uplink scheduling grant for the retransmission is not received from the BS.
Abstract:
A communication control apparatus is provided for controlling recovery of data loss during data communication from a first communication device to a second communication device, which includes an obtaining section configured to obtain a temporal change in a communication load between the first communication device and the second communication device. The communication control apparatus also includes a change section configured to dynamically change a permitted time and an interval between transmissions on the basis of the temporal change in the communication load, the permitted time being a time that is permitted to be used by the second communication device for recovery of data loss and the interval between transmissions being an interval between transmissions of a retransmission request message. The communication control apparatus further includes a retransmission control section configured to control transmission of the retransmission request message in accordance with the interval between transmissions.
Abstract:
A communication method for causing a communication apparatus included in a network to perform a process. The method includes: specifying an arrangement of the communication apparatus in the network, using the number of adjacent apparatuses, which are apparatuses adjacent to the communication apparatus, and the number of adjacent apparatuses of each of the adjacent apparatuses; determining the number of times of broadcast of a broadcast frame, using number-of-times-information in which candidates for an arrangement of the communication apparatus in the network and the number of times at which the communication apparatus broadcasts a frame are associated; and broadcasting the broadcast frame the determined number of times.
Abstract:
Embodiments provide methods, systems, and apparatuses for multicast broadcast multimedia service (MBMS)-assisted content distribution in a wireless communication network. A proxy terminal may include an MBMS access client configured to receive and cache an MBMS transmission including media data and metadata. The proxy terminal may further include a hypertext transfer protocol (HTTP) server module configured to transmit at least a portion of the media data to a user equipment (UE) of the wireless communication network via an HTTP transmission. The media data and metadata may be in a dynamic adaptive streaming over HTTP (DASH) format. The proxy terminal may be included in an evolved Node B (eNB), the UE, or another UE of the wireless communication network.
Abstract:
A wireless communications system includes a terminal configured to adjust a transmission count of consecutive transmissions of a same data to a base station, based on a radio resource count of radio resources assigned to the terminal, among plural radio resources of a control channel received from the base station; and the base station configured to identify the transmission count based on the radio resource count of the radio resources assigned to the terminal among the plural radio resources of the transmitted control channel, and receive the same data consecutively transmitted by the terminal, based on the identified transmission count.
Abstract:
The present invention relates to a wireless access system which supports machine-type communication (MTC), and more particularly, to various methods for efficiently transmitting, by an MTC terminal, uplink control information (UCI) and/or user data, and to apparatuses supporting same. A method for transmitting an uplink by an MTC terminal which supports machine-type communication (MTC) in a wireless access system, according to one embodiment of the present invention, may comprise the steps of: determining whether an overlap exists between a plurality of physical uplink control channels (PUCCHs) for transmitting uplink control information (UCI) and a plurality of physical uplink shared channels (PUSCHs) for transmitting user data; multiplexing UCI in at least one subframe on an overlapping PUSCH when the plurality of PUCCHs and the plurality of PUSCHs overlap in the at least one subframe; and transmitting the PUSCH on which the UCI has been multiplexed in the at least one subframe.
Abstract:
During operation in the described embodiments, a transmitting electronic device transmits a first data channel protocol data unit (PDU) with a payload containing data D to a receiving electronic device using a Bluetooth Low Energy (BTLE) interface in a sending window for the transmitting electronic device during a regular event, wherein transmitting the first data channel PDU during the regular event comprises using a first frequency to transmit the first data channel PDU. The transmitting electronic device then transmits a second data channel PDU with a payload containing the same data D to the receiving electronic device using the BTLE interface in a sending window for the transmitting electronic device during a corresponding retransmission event, wherein transmitting the second data channel PDU during the retransmission event comprises using a second frequency to transmit the second data channel PDU.
Abstract:
Systems and methods for utilizing transaction boundary detection methods in queuing and retransmission decisions relating to network traffic are described. By detecting transaction boundaries and sizes, a client, server, or intermediary device may prioritize based on transaction sizes in queuing decisions, giving precedence to smaller transactions which may represent interactive and/or latency-sensitive traffic. Further, after detecting a transaction boundary, a device may retransmit one or more additional packets prompting acknowledgements, in order to ensure timely notification if the last packet of the transaction has been dropped. Systems and methods for potentially improving network latency, including retransmitting a dropped packet twice or more in order to avoid incurring additional delays due to a retransmitted packet being lost are also described.
Abstract:
According to one embodiment, a host controller includes a command generator and detector. The command generator generates a command having a retransmission flag in an argument, and transmits the generated command to a memory device. The detector detects timeout if a response from the memory device cannot be recognized within a defined time. When transmitting an initial command, the host controller clears the retransmission flag and transmits the command. If the detector detects timeout, the host controller sets the retransmission flag, and retransmits the same command as the initial command to the device. If a normal response corresponding to the initial command or retransmitted command is received, the host controller recognizes that the command is correctly executed.
Abstract:
The embodiments described herein relate to a receiver device, a method therein, and a transmitter device and a method therein for handling (re) transmissions of packets in a network. The method performed by the receiver device comprises: receiving, from a transmitter device, a packet on at least one resource defined by a resource pattern that is known to both the transmitter device and receiver device; attempting to decode the received packet; and, if, one or more retransmissions/receptions of the same packet occur before the decoding of process is completed; storing the one or more received packet or packets.