Abstract:
In some aspects, an actuation system includes an electrical positioning driver and an electrically-driven actuator. A voltage boost converter in the electrical positioning driver receives an input voltage. The voltage boost converter passes the input voltage to a voltage bus in the electrical positioning driver. The voltage on the voltage bus is converted to an actuator power signal that controls the electrically-driven actuator. The voltage boost converter boosts the voltage on the voltage bus to control a mechanical output performance of the electrically-driven actuator.
Abstract:
An electrical controller for electric rotating machines is provided. A control system for electric rotating machines transmits a controlled quantity of current to or from different windings of the electric rotating machine at any given time. Furthermore, the amplitude of the current is independently variable of the timing and duration of the transmission of the current to or from the windings. This allows increased control of the electric rotating machine and facilitates the operation of the electric motor at high mechanical and/or electrical speeds.
Abstract:
An electrical controller for electric motors is provided. A control system for an electric motor comprises a supply for supplying excitation current to different windings of the motor at any given time. Furthermore, the amplitude of the excitation current is independently variable of the timing and duration of the application of the excitation current to the windings. This allows increased control of the motor and facilitates the operation of the motor at high mechanical and/or electrical speeds.
Abstract:
There is provided a control device which controls a transformer in accordance with a total loss imposed on a load driving system including the transformer and a load. In a control device of a transformer that boosts or drops an output voltage of a DC power supply and provides the output voltage to a load, the control device includes: a switching controller which performs switching control of the transformer; a load power deriving unit which derives load power; a transformer loss decrease amount deriving unit which derives a decrease amount of loss generated in the transformer, based on the load power derived by the load power deriving unit and a transformer ratio of the transformer, when the switching controller performs intermittent control of the transformer; a load loss increase amount deriving unit which derives an increase amount of loss generated in the load when the switching controller performs the intermittent control of the transformer; and a control command unit which instructs the switching controller to perform the intermittent control of the transformer when the decrease amount of transformer loss derived by the transformer loss decrease amount deriving unit is larger than the increase amount of load loss derived by the load loss increase amount deriving unit.
Abstract:
In the case where DC power from a DC power supply is converted to AC power by an inverter and supplied to an AC motor, a power compensator is connected in parallel with a DC power input portion of the inverter, and a control device of the power compensator charges/discharges a power storage device to perform a power compensation process A when power demand for the AC motor exceeds a predetermined value, and takes into account power allowance which can be inputted and outputted from the DC power supply to the power storage device and performs a power storage adjustment process B of performing auxiliary charge of the power storage device within the range of the power allowance when the power compensation process A is unnecessary.
Abstract:
The present invention provides a power supply device for an electric vehicle that allows highly efficient operation of a compressor inverter. A power supply device for motor vehicle 10 has: a main circuit 13 having a power source 11, a DC-DC converter 18, and a main inverter 17 that drives a main motor 12; an auxiliary circuit 15 having an auxiliary inverter 19 that drives an auxiliary motor 14, a first electrical circuit 23 that is connected to the main circuit 13 on a primary side of the DC-DC converter 18, a second electrical circuit 24 that is connected to the main circuit 13 on a secondary side of the DC-DC converter 18, and a connection circuit 30 configured to be capable of selecting one of the first electrical circuit 23 and the second electrical circuit 24 as a path for supplying a direct current voltage to the auxiliary inverter 19; and a control device 16 that controls the connection circuit 30 when the main motor 12 is in power running operation so that switching between the first electrical circuit 23 and the second electrical circuit 24 is performed corresponding to a required voltage of the auxiliary inverter 19.
Abstract:
An apparatus and a method actuate a frequency converter of an electric machine having a safety function, in particular a safe-torque-off (STO) function. Wherein, by a preferably clocked converter circuit, an electrically isolated output voltage is generated from an input voltage, from which output voltage a control signal is generated for the frequency converter for the operation thereof in accordance with standards and for triggering the safety function. An actuation signal is generated for a semiconductor switch which is periodically connected to the input voltage, and the output voltage is limited when the output voltage exceeds a switching threshold.
Abstract:
A circuit switching element is provided that switches a step-up/step-down bidirectional chopper circuit, arranged between a DC bus and a power storage element, to a first chopper circuit or to a second chopper circuit, whose step-up and step-down characteristics are in a complementary relation. The first and second chopper circuits are used together at a time of charge and discharge. Accordingly, an AC motor drive device having mounted therein a power storage system is obtained, in which the power storage system can perform charge and discharge to and from the power storage element, regardless of a bus voltage and can increase energy use efficiency.
Abstract:
At least one of a current value and a voltage value of an electrical storage device which is charged and discharged is detected with the use of each of a plurality of sensors. A predetermined process is executed on the basis of the detected values of the plurality of sensors The predetermined process is executed without using the detected values of the sensors in the predetermined process when a difference between a frequency of each of the detected values, which varies with a rotation speed of a motor that operates upon reception of an output power of the electrical storage device, and a resonance frequency of a step-up circuit, which varies with operation of the step-up circuit that steps up an output voltage of the electrical storage device and outputs the stepped-up electric power to the motor, is smaller than a threshold.
Abstract:
An electrical controller for electric motors is provided. A control system for an electric motor comprises a supply for supplying excitation current to different windings of the motor at any given time. Furthermore, the amplitude of the excitation current is independently variable of the timing and duration of the application of the excitation current to the windings. This allows increased control of the motor and facilitates the operation of the motor at high mechanical and/or electrical speeds.