Abstract:
A method for controlling a positioning device of an internal combustion engine includes the steps of: providing an electric motor for actuating the positioning device; detecting a position of the positioning device in relationship to a stop; determining whether the positioning device is near the stop; enabling overshoot when the positioning device is not near the stop; determining a velocity of the positioning device; and, enabling overshoot of the positioning device when the positioning device is near the stop, but the velocity is below a predetermined value.
Abstract:
In an electromagnetically operable engine valve assembly including a controller for an internal combustion engine, a stable initialization is achieved which suppresses a collision of a movable element against an electromagnet to cope with a viscosity of a lubricating oil during an engine start under an engine low temperature. A supplied current value is feedback controlled in accordance with a position of movable element when an initialization control such that a current is continuously supplied to one of electromagnets is executed. At this time, the feedback control gain G1 is, first, set to a relatively small value and is, thereafter, switched to a relatively large value at a gradual pace for each execution of the initialization control until the initialization control has succeeded in moving the movable element to an initial position.
Abstract:
A controller for electrically actuated engine valves operates in a switching mode to monitor back EMF during periods when the coil drive current is off. Back EMF is used to determine a position of the armature so as to control the armature current to provide for soft seating of the valve reducing valve wear.
Abstract:
An injector needle/armature assembly stroke is controlled so as to minimize opening and closing impact forces. The controlled motion eliminates or significantly reduces the problems associated with valve bounce, providing less acoustic emission, reduced wear, improved spray characteristics and better flow regulation. The current applied to the electromagnetic coil of the injector in accordance with a modified injector timing pulse waveform serves to reduce impact velocities at each end of the armature stroke. The waveform can be optimized for a class of injectors with a pulse width modulated waveform, repeatedly re-energizing and de-energizing the electromagnetic coil in accordance with an optimized on/off pulse train.
Abstract:
A method is proposed for operating an electromagnetic load device with a movable armature, especially an injection valve of an internal combustion engine. The load device is supplied, at the beginning of trigger pulse, with a high amperage current and, at least toward the end of the pulse, with a reduced current. This method is characterized in that, starting with a certain amperage, at which preferably the armature is set into motion but has not as yet reached its final position, the current rise is at least reduced. The apparatus aspect comprises a measuring element and switching element connected in series with the load device. A threshold switch is associated with the measuring element to control the switching element. The switching thresholds of the threshold switch can be controlled in dependence on current and/or on time. The first current threshold is at a value at which the armature of the load is preferably being moved, but has not yet reached its final position. The method and the apparatus achieve a low power operation of the load device with a coincidence factor between the trigger pulse signal and, for example, the switching characteristic of an injection valve. It is essential that the current flow, after the starting current, no longer continue to rise in the same way but rather, if possible, is already somewhat reduced and, after the armature of the load has been attracted, a holding current is established as a function current and/or time. With a view toward a clear cut-out characteristic, a short term current supply to the load is advantageous at the end of the actual trigger pulse signal.
Abstract:
A control device of a fuel injection device improves stabilization in an opening operation of a valve element and stabilizes an injection amount. The control device includes a valve element to open a fuel passage by being separated from a valve seat, a movable iron core to perform an opening/closing operation of the valve element, and a fixed iron core to attract the movable iron core when a current flows to a coil. The control device includes a control unit which performs an intermediate energization in which the coil is energized again to attract the movable iron core to the fixed iron core and then the energizing to the coil is blocked and the movable iron core is displaced in a direction away from the fixed core. The control unit controls whether the intermediate energization is performed according to an injection interval of the fuel injection device.
Abstract:
An electromagnetic actuation system includes an electrical coil, a magnetic core, an armature, a controllable bi-directional drive circuit for selectively driving current through the coil in either of two directions, and a control module providing an actuator command to the drive circuit. Current is driven though the electrical coil in a first direction when an actuation is desired. When the actuation is not desired current is driven through the electrical coil including in a second direction sufficient to reduce residual flux within the actuator below a level passively attained within the actuator at zero coil current.
Abstract:
When a condition for reducing a noise caused in the high-pressure pump is satisfied, a reduction control unit implements a noise reduction control to supply a smaller power to reduce a moving speed of a movable portion in a close acting direction to put a valve body into a closed state for a predetermined time after an energization start timing of a solenoid in a plunger rising period. A closing control unit causes a closing current, which is a constant current for surely putting the valve body into the closed state, to flow the closing current in the solenoid when the noise reduction control is completed in the plunger rising period. The predetermined time is shorter than an energization period in which a current flows in the solenoid.
Abstract:
A method is provided for determining the velocity of a pintle assembly in a solenoid fuel injector during a closing stroke of the pintle assembly, such that a braking step is performed during the closing stroke, which includes operating an injector driver with a current regulator to establish a braking current in the solenoid coil. The velocity of the pintle assembly is derived from the duty-cycle of the current regulator during the braking step. A method of operating a solenoid fuel injector, in particular for gaseous fuel, using the so-determined pintle velocity is also provided.
Abstract:
Method for controlling a piezoelectric actuator acting on valve elements to open or close a fuel injector respectively allowing or preventing fuel injection into a combustion chamber of an engine, the method includes: applying to the piezoelectric actuator a nominal electrical charge to open the injector, as a function of the torque required and the engine speed, to open the valve elements for fuel injection, thereafter applying to the actuator at least one electrical polarization charge, to polarize the actuator during an opening phase of the injector and fuel injection into the combustion chamber, thereafter commanding the closure of the injector by applying to the actuator at least one electrical discharge to close the valve elements, the step of applying the electrical polarization charge including a prior step of increasing the value of the charge current to a value greater than that of the nominal charge.