Abstract:
It is an object of the present invention to provide a control method of a high-pressure fuel supply pump and a high-pressure fuel supply pump using the same capable of effectively reducing noise generated when an electromagnetic suction valve is opened. This can be realized such that, in a control method of a high-pressure fuel supply pump including a suction valve disposed on the suction side of the pressurizing chamber, a rod for urging the suction valve toward the opening valve direction, and an anchor for moving the rod in the closing valve direction with attraction by magnetic attraction caused by a solenoid being energized, when the anchor moves in the opening valve direction, a first drive current is passed through the solenoid for a predetermined period of time, and thereafter a second drive current larger than the first drive current is passed through the solenoid for a predetermined period of time.
Abstract:
A method is described to control an actuation profile of an electromechanical linear actuator device of an internal combustion engine designed to control the movement of a component; the internal combustion engine comprises a sensor, which faces the actuator device and is designed to detect the noise generated by the movement of the component; the method comprises the steps of acquiring, by means of the sensor, the intensity of a signal generated by the impact of the component against a limit stop; identifying a first listening window of the signal associated with said impact; calculating a noise index inside the listening window; comparing the noise index with a reference value; and controlling the actuation profile of the actuator device based on this comparison.
Abstract:
The present disclosure teaches a method for operating an injector with piezoelectric direct drive of an injection system of an internal combustion engine. The method may comprise providing a current to the piezoelectric actuator at a first level, then quickly reducing the current for charging the piezoelectric actuator before or after the opening of the nozzle needle and before the mechanical impacting of the needle or the hydraulic equilibrium point of the needle, the current reduced to such an extent that the sum of the forces acting on the nozzle needle become approximately zero in the case of a small needle lift (part lift), and after reducing the current, supplying a low current in a constant or ramp-shaped fashion until a predetermined setpoint energy is reached.
Abstract:
In a drive unit of a fuel injection device, an electric current is supplied to the fuel injection device by applying a high voltage to the fuel injection device from a high voltage source whose voltage is boosted to a voltage higher than a battery voltage at the time of opening a valve of the fuel injection device. Thereafter, the electric current supplied to the fuel injection device is lowered to a current value at which a valve element cannot be held in a valve open state by stopping the applying of the high voltage from the high voltage source. Thereafter, in a stage where a supply current is switched to a hold current, another high voltage is applied to the fuel injection device from the high voltage source.
Abstract:
A method for operating a high-pressure pump of an injection system and an injection system is provided. The method relates to a switching off of additional pulses, which are applied to a valve of the high-pressure pump, if the determined coil temperature of the valve exceeds a limit value. The method is, for instance, then carried out if additional pulses are applied to the valve to reduce noise (“whisper function”). Current information and voltage information from the control signal of the valve of the high-pressure pump are used to measure the temperature of the valve and switch off additional current pulses through this information if there is a risk of the valve overheating. The disclosure further describes an injection system of a combustion engine, wherein the injection system comprises a high-pressure pump having a valve and a corresponding control unit.
Abstract:
Systems and methods for a permanently magnetized valve mechanism and/or valve mechanism seat for a fuel injector are disclosed. In one example approach, a fuel injector comprises a valve mechanism and a valve mechanism seat, wherein at least one of the valve mechanism and the valve mechanism seat is permanently magnetized; an injector driver circuit for actuating the valve mechanism; and a spring biasing the valve mechanism in a closed position against the valve mechanism seat. For example, a first amount of current may be supplied in a first direction to the injector driver to lift a permanently magnetized injector valve mechanism from the injector valve mechanism seat, and a second amount of current may be supplied in a second direction to the injector driver to close the permanently magnetized injector valve mechanism onto the injector valve mechanism seat.
Abstract:
In a method for actuating a switch element of a valve device between a first end position and a second end position, in a normal mode within a cycle following an end of a first energization, a movement of the switch element in a first direction effected by the loading device is retarded in a first direction by a brief second energization (“braking pulse”) that is introduced within the cycle once a pause period has ended following a characteristic point in time. It is provided that the optimum pause period and/or the optimum variable characterizing the braking pulse be ascertained in an adaptation mode.
Abstract:
The drive device is configured to, during a time interval between an earlier fuel injection (first fuel injection) and a later fuel injection (second fuel injection), supply an electromagnetic coil with an intermediate current at a voltage with a level of not opening the valve. Further, the drive device sets a voltage application for supplying the intermediate current to initiate before a valve closing in the earlier fuel injection and terminate before half a period of time between a first instant when the valve is closed in the earlier fuel injection and a second instant when a supply of a drive current for opening the valve is initiated in the later fuel injection.
Abstract:
In a drive unit of a fuel injection device, an electric current is supplied to the fuel injection device by applying a high voltage to the fuel injection device from a high voltage source whose voltage is boosted to a voltage higher than a battery voltage at the time of opening a valve of the fuel injection device. Thereafter, the electric current supplied to the fuel injection device is lowered to a current value at which a valve element cannot be held in a valve open state by stopping the applying of the high voltage from the high voltage source. Thereafter, in a stage where a supply current is switched to a hold current, another high voltage is applied to the fuel injection device from the high voltage source.
Abstract:
A method for controlling a valve including a spring, an actuator having an actuator force opposing the spring, and a pin actuatable by the actuator. To open the valve, in a first operating mode a current having a predefined curve is applied to the actuator, starting from a starting value of the current at which the pin is positioned to allow the valve to close, measured values of the current are determined chronologically sequentially, a reference value of the current takes on the current measured value of the current when the measured current deviates from the applied current by a predefined degree. In a second operating mode, a current having a predefined curve is applied to the actuator, starting with the starting value of the current to a final value of the current at which the pin is in a position that prevents the valve from closing.