Abstract:
A method and apparatus for removing nitrogen oxides from internal combustion engine exhaust emissions consisting of the operations of contacting the exhaust emissions with a non-thermal plasma (1) and a silver doped alumina catalyst (2) and then an indium-doped zeolite catalyst (3).
Abstract:
A reactor for the plasma assisted processing of gaseous media, including a cylindrical reactor bed of gas permeable dielectric material contained between two co-axial electrodes, wherein the inner electrode has associated with it a number of radially projecting vanes or disks made of a dielectric material having a permittivity greater than that of the reactor bed material.
Abstract:
A device for purifying an exhaust gas contains at least one first and one second component with a respective shell and core through which the exhaust flows, as well as with two front faces each. At least one of the front faces of the first component and at least one front face of the second component has a predetermined profile with elevations and depressions. The elevations of the front face of the first component extend into the depressions of the front face of the second component and vice versa, thereby configuring a penetration section. The first component is disposed electrically insulated from the second component. The components have a potential difference between them and plasma is generated in the penetration section. The compact plasma reactor reduces the pollutant concentration in the exhaust gas of an internal combustion engine operated in the lean mode, especially when combined with an oxidation catalyst.
Abstract:
Diesel engines and/or lean-burn internal combustion engines require a so-called SCR catalyst for the selective catalytic reduction of nitrogen oxides to purify their exhaust gases, which can be additionally activated by non-thermal gas-discharge plasmas. The invention includes absorbing the hydrocarbons contained in the exhaust gases to a large extent, and then feeding the exhaust gases to the non-thermal gas-discharge plasma. An ammonia-based reducing agent is added to the exhaust gases so treated and the exhaust gases are supplied to the SCR catalyst to reduce the nitrogen oxides. The corresponding device includes a hydrocarbon absorber, a gas-discharge reactor, a dosing unit for a reducing agent, and an SCR catalyst connected in series in the exhaust gas train close to the engine.
Abstract:
Without of affect of sulfur in fuel, NOx in exhaust gas is decomposed completely using discharge and low temperature of 300 C. degree, to establish technique for generating NO2 for necessary to oxidize a particle substance in a real time. The generated NO2 and ozone and active oxygen generated in oxygen atmosphere are used an oxidation agent the particle substance is decomposed completely using discharge and low temperature of 300 C. degree. As to NOx in exhaust gas, No is decomposed completely using a thin and narrow wire shape bear wire and NO2 for necessary to the particle substance is generated and is processed in response to operation condition of the engine in low temperature of 300 C. degree.
Abstract:
An emission control device and method are provided for treating exhaust to reduce pollutants contained therein. The device includes a first chamber through which the exhaust passes. First and second metal grids are disposed within the first chamber at a predetermined distance from each other. Voltage is supplied to the insulated first grid by an electrical induction coil at a predetermined frequency depending upon the application. Electrical charges are generated between the first and second grids which electrically ionizes the exhaust stream. The exhaust stream is then further treated at a second chamber having strata. The strata can further include or exclude noble metals for treatment of the exhaust.
Abstract:
An apparatus and a method for enhancing the rate of a chemical reaction in a gas stream. The apparatus includes at least one heterogeneous catalyst having an upstream end and a downstream end, and at least one surface having a plurality of catalytically active sites on the surface, where the catalyst is positioned so that at least a portion of the gas stream contacts at least a portion of the catalytically active sites on the surface. At least one device for producing radicals or other active species from at least one of water vapor or other gaseous species, such as a corona discharge device or a UV light source is used to produce radicals or other active species, which are introduced into the gas stream at a position upstream of the downstream end of the catalyst. The radicals or other active species are introduced in an amount sufficient to reduce or eliminate poisoning of the catalyst by catalyst poisons, such as sulfur, sulfur containing compounds, phosphorous, phosphorous containing compounds, and carbon.
Abstract:
An apparatus and method for treating exhaust gases. In this apparatus, a plurality of stages of reactor chambers (R1, R2, . . . Rn) are connected in series in the direction of an exhaust gas flow. Further, high-voltage power supplies (V1, V2, . . . and Vn) are connected to the reactor chambers (R1, R2, . . . and Rn), respectively. Moreover, in each of these reactor chambers, a streamer discharger plasma is generated. Furthermore, the more downstream a reactor chamber of a stage is placed, the lower energy to be cast into the reactor chamber becomes. The density of electrons generated in a gas decomposition unit is high in a portion thereof on the upstream side of the exhaust gas flow and the electron density is low in a portion thereof on the downstream side. Additionally, the present invention further provides a pulse generator in which a high voltage, which is an output voltage of a D.C. charger (V0), is simultaneously applied to a plurality of distributed constant lines (or transmission lines) (1−1, 1−2, 2−1, 2−2, . . . , N−1 and N−2), which are connected in parallel with one another, by means of a signal shortcircuit switch (S1).
Abstract:
A non-thermal plasma reactor element is provided comprising a multi-cell stack prepared from a plurality of formed building blocks of dielectric material, the walls of the building blocks defining a cell having an exhaust passage for flowing gas to be treated therethrough. A conductive print forming an electrode and connector is disposed on at least one wall of each of the cells and outer insulative plates, disposed on opposite ends of the multi-cell stack, are provided to protect the conductive print. The simplified design eliminates the need for spacers between individual cells, thus reducing the total number of components. Use of a three-dimensional conductive print further simplifies preparation by eliminating the need for a secondary conductive print along the edge of the multi-cell stack after assembly.
Abstract:
An exhaust emission purifier includes a catalyst unit disposed in an exhaust pipe of an engine. Electrodes (reaction adjustment unit) are provided on a honeycomb carrier of the catalyst unit in a layered form in order to apply an electric field to the vicinity of the catalyst surface to thereby adjust the catalytic reaction. An ECU serves as a status detection unit to detect factors which affect the exhaust gas purifying performance of the catalyst unit (i.e., operating conditions), and serves as a control unit which controls the electric field applied by the electrodes, on the basis of the detected operating conditions.