摘要:
An apparatus for manufacturing carbon nanotubes includes: a reaction chamber having an inlet at a bottom and an opposite outlet at a top thereof, and a substrate region configured for accommodating a substrate for growing carbon nanotubes thereon; an electric field generating device configured for generating an electric field around the substrate region, the electric field being substantially perpendicular to the substrate; and a magnetic field generating device configured for generating a magnetic field around the substrate region, the magnetic field being substantially perpendicular to the substrate.
摘要:
The present invention provides apparatus and methods for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom. In some embodiments, an interior-flow substrate includes a porous surface and one or more interior passages that provide reactant gas to an interior portion of a densely packed nanotube forest as it is growing. In some embodiments, a continuous-growth furnace is provided that includes an access port for removing nanotube forests without cooling the furnace substantially. In other embodiments, a nanotube film can be pulled from the nanotube forest without removing the forest from the furnace. A nanotube film loom is described. An apparatus for building layers of nanotube films on a continuous web is described.
摘要:
The present invention provides a method of manufacturing a carbon nanofiber of the present invention including dissolving a catalyst-precursor and a supporter-precursor into a solvent of a hydrocarbon-based compound to prepare a reacting solution, atomizing the reacting solution, thermally decomposing the atomized reacting solution to forming particles of the carbon nanofiber, and collecting the particles of the carbon nanofiber. In accordance with the above method, the carbon nanofiber is efficiently mass-produced in situ process and in batch process.
摘要:
A carbon nano-fibrous rod including a predetermined number of hexagonal carbon layers extending in one direction, and a fibrous nanoncarbon which includes a plurality of the carbon nano-fibrous rods three-dimensionally gathered are disclosed.
摘要:
This invention provides a reactor for carbon nano-fibre production comprising a generally horizontal elongate cylindrical reaction vessel arranged to rotate about its cylindrical axis and containing in use a particulate catalyst-containing reaction bed, said reaction vessel having a gas inlet port and a gas outlet port positioned such that one of said inlet and outlet ports is in said bed and the other is outside said bed.
摘要:
This invention relates to a carbon structure manufacturing device, which forms carbon structures on a substrate. This manufacturing device comprises a first chamber, which forms a first space accommodating the substrate; a raw material gas supply device, which supplies raw material gas for formation of the carbon structures to the first space; a second chamber, which forms a second space separate from the first space; a gas supply device, which supplies gas for generation of plasma to the second space; a plasma generation device, which generates plasma in the second space; an aperture, connecting the first space and the second space; and, a plasma introduction device, which introduces plasma generated in the second space into the first space via the aperture; the raw material gas is used to form the carbon structures on the substrate. By means of this manufacturing device, when forming carbon structures on the substrate, the occurrence of contamination, foreign matter, and/or the like on electrodes and/or the like can be suppressed, and carbon structures can be formed satisfactorily over a broad area.
摘要:
An exemplary apparatus facilitates the formation of carbon nanotubes with desired tip structures. The apparatus includes a reaction chamber including a gas outlet, and an evacuation device. The reaction chamber is configured for receiving a catalyst from which the carbon nanotubes grow and providing an environment for growing the carbon nanotubes. The evacuation device includes an intake connected with the gas outlet. The evacuation device is configured for reducing an inner pressure in the reaction chamber and inducing the formation of carbon nanotubes with desired tip structures. Methods for synthesizing carbon nanotubes with desired tip structures are also provided.
摘要:
The invention provides a fiber containing carbon which is less deteriorated in terms of electron emission characteristic, is excellent in terms of reproducibility, and can in addition be formed at a low cost, a substrate and electron emission device using the fiber containing carbon, an electron source using the electron emission device, a display panel using the electron source, and an information displaying/playing apparatus using the display panel, and a method of manufacturing these. The manufacturing method comprises a first step of preparing a substrate (substrate 1) equipped with a catalyst (catalyst layer 3) on its surface; and a second step of causing the fiber containing carbon (carbon fiber 4) to grow using the catalyst, whereby the second step comprises, in order to decrease, from a midway point of time in this step, the growth rate at which the fiber containing carbon grows, a sub-step of controlling the growth conditions for the fiber containing carbon.
摘要:
Disclosed is a fine carbon fibrous structure which comprises carbon fibers and granular parts, wherein at least two granular parts connect by at least one of the carbon fibers; wherein the fine carbon fibrous structure have a D2/D1 ratio of 1.3 to 10, wherein the D1 is the median diameter of outer diameters of the carbon fibers and the D2 is the area-based circle-equivalent median diameter of the particles; wherein the granular parts have a D2 of 0.05 to 0.4 μm; wherein the carbon fibers have a median length of not more than 20 μm; wherein the granular parts are produced in a growth process of the carbon fibers; and wherein at least a graphene layer which exists on and constitutes the surface of each granular part is continued on a graphene layer which exists on and constitutes the surface of the carbon fiber which connects between the granular parts.
摘要:
The subject invention provides a stable mass production method of carbon nano structure at low cost immune to variation of particle diameter of the catalyst microparticle in the catalyst material. The subject invention also provides a production device used for the method, and a new carbon nano structure having a conformation suitable for the mass production. The production method of carbon nano structure comprising fluidizing a material gas and catalyst microparticles in the reactor so that the material gas and the catalyst microparticles are brought into contact with each other, wherein said catalyst microparticles are suspended by the instantaneous spraying of the high-pressure gas, and then the suspension effect of the catalyst microparticles is stopped so that the catalyst microparticles naturally fall. The particle diameter of the catalyst microparticles is thus selected. With this arrangement, only the selected catalyst microparticles with the desired diameter are supplied to the reactor. Since this arrangement is immune to influence of variation in particle diameter of catalyst microparticles contained in the catalyst material, it achieves stable mass production of carbon nano structure at low cost.