摘要:
Method and processes for synthesizing single-wall carbon nanotubes is provided. A carbon precursor gas is contacted with metal catalysts deposited on a support material. The metal catalysts are preferably nanoparticles having diameters less than about 50 nm. The reaction temperature is selected such that it is near the eutectic point of the mixture of metal catalyst particles and carbon.
摘要:
The disclosed materials, methods, and apparatus, provide novel ultra-high temperature materials (UHTM) in fibrous forms/structures; such “fibrous materials” can take various forms, such as individual filaments, short-shaped fiber, tows, ropes, wools, textiles, lattices, nano/microstructures, mesostructured materials, and sponge-like materials. At least four important classes of UHTM materials are disclosed in this invention: (1) carbon, doped-carbon and carbon alloy materials, (2) materials within the boron-carbon-nitride-X system, (3) materials within the silicon-carbon-nitride-X system, and (4) highly-refractory materials within the tantalum-hafnium-carbon-nitride-X and tantalum-hafnium-carbon-boron-nitride-X system. All of these material classes offer compounds/mixtures that melt or sublime at temperatures above 1800° C.—and in some cases are among the highest melting point materials known (exceeding 3000° C.). In many embodiments, the synthesis/fabrication is from gaseous, solid, semi-solid, liquid, critical, and supercritical precursor mixtures using one or more low molar mass precursor(s), in combination with one or more high molar mass precursor(s). Methods for controlling the growth, composition, and structures of UHTM materials through control of the thermal diffusion region are disclosed.
摘要:
A system for producing hydrogen and a carbon nanoproduct includes a hydrocarbon feed gas supply configured to supply a hydrocarbon feed gas at a selected flow rate, a reactor having a hollow reactor cylinder with an enclosed inlet adapted to continuously receive the hydrocarbon feed gas, a reaction chamber in fluid communication with the inlet, and an enclosed outlet in fluid communication with the reaction chamber adapted to discharge a product gas comprised of hydrogen and unreacted hydrocarbon feed gas, along with the carbon nanoproduct. The system also includes a catalyst transport system adapted to move a selected amount of a metal catalyst through the reaction chamber at a rate dependent on the flow rate of the hydrocarbon feed gas to form the product gas. The system also includes a carbon separator adapted to separate the carbon product from the product gas and from the metal catalyst.
摘要:
Methods are provided for the preparation of single-walled carbon nanotubes using chemical vapor deposition processes. In some aspects, single-walled carbon nanotubes having narrow distribution of diameters are formed by contacting a carbon precursor gas with a catalyst on a support, wherein the catalyst has an average diameter of less than about 2 nm.
摘要:
Disclosed is a fine carbon fibrous structure which comprises carbon fibers and granular parts, wherein at least two granular parts connect by at least one of the carbon fibers; wherein the fine carbon fibrous structure have a D2/D1 ratio of 1.3 to 10, wherein the D1 is the median diameter of outer diameters of the carbon fibers and the D2 is the area-based circle-equivalent median diameter of the particles; wherein the granular parts have a D2 of 0.05 to 0.4 μm; wherein the carbon fibers have a median length of not more than 20 μm; wherein the granular parts are produced in a growth process of the carbon fibers; and wherein at least a graphene layer which exists on and constitutes the surface of each granular part is continued on a graphene layer which exists on and constitutes the surface of the carbon fiber which connects between the granular parts.
摘要:
A method of producing a carbon nanotube product comprising a catalytic particle and carbon nanotubes deposited thereon. The catalytic particles preferably contain Co or Ni metal from Group VIII, and Mo or W metal from Group VIb. The catalytic particle preferably comprises a support material upon which the metals are disposed. The carbon nanotube product is preferably formed by exposing the catalytic particle to a carbon-containing gas at a temperature sufficient to form the carbon nanotubes as a primary portion of a solid carbon product with minor amounts of graphite and amorphous carbon residue.
摘要:
A process for producing-vapor grown carbon fiber (VGCF) reinforced continuous fiber performs for the manufacture of articles with useful mechanical, electrical, and thermal characteristics is disclosed. Continuous fiber preforms are treated with a catalyst or catalyst precursor and processed to yield VGCF produced in situ resulting in a highly entangled mass of VGCF infused with the continuous fiber preform. The resulting continuous fiber preforms are high in volume fraction of VGCF and exhibit high surface area useful for many applications. Furthermore, this invention provides for a continuous fiber preform infused with VGCF so that the carbon nanofibers are always contained within the fiber preform. This eliminates the processing steps for isolated carbon nanofibers reported in other carbon nanofiber composite approaches and therefore greatly reduces risk of environmental release and exposure to carbon nanofibers.
摘要:
Methods, processes, and apparatuses for the large scale synthesis of single-walled carbon nanotubes having small diameters are provided. Metal catalysts having small diameter and narrow distribution of particle sizes are prepared and continuously injected as aerosols into a reactor. The metal catalysts are supported on supports that are substantially free of carbon, and the reactor is configured to control the flow of the gases such that the reaction time and contact of the reactants with the reactor walls can be controlled. Single-walled carbon nanotubes can be continuously synthesized at a large scale and with high yields, and with small diameters and with narrow diameter ranges.
摘要:
A process for growth of a lawn of aligned carbon nanotubes is described. The nanotubes are useful for cold cathode flat panel display, composites reinforcement and damping treatment.
摘要:
A catalyst material for carbon nanotube synthesis includes a uniform dispersion of host particles on a substrate. The host particles themselves include catalyst nanoparticles that are effective to catalyze nanotube syntheses reactions and provide nucleation sites. Methods for preparing a catalyst material includes co-sputtering a catalytic species and a host species to directly form the catalyst material. Methods for synthesizing generally aligned nanotubes are also provided. In these methods host particles comprise alumina and the catalyst nanoparticles comprise iron. Also in these methods nanotube synthesis is achieved in an atmosphere including a carbon-containing gas and water vapor.