Abstract:
The present invention relates to a method for preparing L-menthol in solid form, specifically in the form of flakes, by bringing an L-menthol melt into contact with two chilled surfaces distanced from one another. Moreover, the present invention relates to the L-menthol in solid form obtainable by said method, and also to its use for incorporation into utility and consumer goods of all kinds.
Abstract:
A method of producing butanol, which has a step of removing impurities contained in a butanol-containing solution, is provided. In the method, a butanol-containing solution is filtered through a nanofiltration membrane. Then the butanol-containing solution is collected from the permeate flow of the nanofiltration membrane.
Abstract:
Provided is a water separation membrane capable of effectively separating water from a water solution of ethanol, saccharide or the like. The water separation membrane is composed of polypyrrole doped with a sulfonate ion. The sulfonate ion may be an aromatic or aliphatic sulfonate ion.
Abstract:
A method for producing a carbon membrane of the present invention is a production method where a carbon membrane obtained by subjecting a carbon-containing layer to thermal decomposition in an oxygen inert atmosphere while sending a gas mixture containing an oxidizing gas thereinto is thermally heated. The carbon membrane is subjected to a heating oxidation treatment with controlling the ratio of the flow rate of the gas mixture to the areas of the carbon membrane to 0.5 cm/min. or more to control (temperature ° C.)2×time (h)/10000, which is the relation between the temperature of the gas mixture and the flow time, to 9 to 32. This enables to obtain a carbon film which selectively separates alcohols having 2 or less carbon atoms from a liquid mixture of the alcohols having 2 or less carbon atoms and organic compounds having 5 to 9 carbon atoms.
Abstract:
The present invention includes a process to dry a feed steam containing alcohol and a small quantity of water. The process includes the step of using pressure swing adsorption to produce a first alcohol stream of substantially dehydrated alcohol and a second mixed stream of water and alcohol. The second mixed stream is distilled in a distillation column to produce a relatively purified water stream and a wet alcohol stream. The wet alcohol stream is added to the feed stream. Optionally the present invention is used to recover excess methanol from a biodiesel reactor that uses one or both of the transesterification reaction and the esterification reaction. The biodiesel reactor produces a product stream comprising fatty acid esters, water and alcohol. Water and alcohol is separated from the product stream. The alcohol is dried as noted above. Dried alcohol is recycled to one or both of the transesterification reaction and the esterification reaction.
Abstract:
A method of producing a mixed higher alcohol blend is disclosed which may be self contained both composition-wise with regard to the specific alcohols as well as energy-wise. In one embodiment, the energy created during an exothermic Fischer-Tropsch reaction is utilized to drive downstream distillation column reboilers in a cascade mechanism, thereby providing a low energy process. In one embodiment, an extraction process is performed utilizing a suitable solvent and the co-solvent capabilities of the C4+ higher alcohols already present in the aqueous alcohol stream provided to the extraction column.
Abstract:
In one embodiment, the invention is to a process for producing ethanol, comprising the step of providing from a distillation column in a carbonylation process a purified acetic acid stream comprising up to 25 wt. % water. The process further comprises the step of hydrogenating acetic acid of the purified acetic acid stream in the presence of a catalyst and under conditions effective to form a crude ethanol product comprising ethanol and water. Ethanol is recovered from the crude ethanol product.
Abstract:
The present invention relates to a method for purifying an aqueous solution of fermentation alcohol to give anhydrous alcohol, wherein a mash column is controlled such a manner that an alcohol concentration of an alcohol/water mixed vapor distilled from a mash column is less than 50% by weight and a reflux amount of a condensate to a distillation column is controlled such a manner that an alcohol concentration of an alcohol/water mixed vapor that is distilled from the distillation column is 65 to 85% by weight. According to the present method, the purification for obtaining an anhydrous alcohol from an aqueous solution of a fermentation alcohol with the use of a mash column, a distillation column, an evaporator and a membrane separator can be more conveniently carried out with an extremely high energy efficiency as the whole process.
Abstract:
Monitoring and recycling gases from acetic acid hydrogenation reaction to maintain a constant pressure in the hydrogenation reaction system. Purging of the vapor stream comprising hydrogen may be limited or reduced. Further purging of the by-product may be from the dissolved by-product gases.
Abstract:
The systems and methods described herein provide for modified lignins and other compositions that may be useful as surfactants. These compositions have particular utility for energy-related applications. In embodiments, they may be useful for enhanced oil recovery. In embodiments, they may be useful for extracting bitumen from oil sands. In embodiments, they may be useful for environmental remediation.