Abstract:
The invention relates to a high-performance compacted ceramic material, comprising between 40%-85% by weight of glassy phase, having a density between 2.3 and 3.0 g/cm3, and characterized in that it has an internal porosity of less than 4% by volume. This material is highly resistant to mechanical and chemical action, sparingly permeable and prevents staining, so it is ex tremely suitable as a building material, particularly for kitchen countertops.
Abstract:
A dried or at least partially dried ceramic feedstock, a method of preparing a dried or at least partially dried ceramic feedstock having a residual solvent content of up to about 15 wt. %, ceramic formulations comprising one or more ceramic precursors, temperature sensitive gelling agent, solvent, and having a viscosity suitable for low pressure injection molding, methods for preparing said ceramic formulations, a method of forming a ceramic article from said ceramic formulations, and a ceramic article obtainable therefrom.
Abstract:
A manufacturing method for ceramic tile products comprises the steps of providing a green body and sintering the green body. The green body has a composition comprising gypsum ranging from 15 to 35% weight of the green body and a subsidiary material ranging from 65 to 85% weight of the green body.
Abstract:
Disclosed are a method for manufacturing exothermic ceramics for a microwave oven and exothermic ceramics for microwaves. In particular, provided is a method for manufacturing exothermic ceramics for a microwave oven, in which the exothermic ceramics are formed by mixing a ceramic body, such as clay, plastic clay or soil, with an exothermic element prepared by combining at least one selected from silicon carbide, carbon ferrite and iron oxide, which are exothermic components. Accordingly, the exothermic ceramics of the present invention can minimize a sense of difference between the exothermic element and the ceramic body component, which is raw material for ceramics, thereby being capable of emitting high-temperature heat in a short time by means of microwaves as well as maintaining stability in the shape. Furthermore, due to integral forming, the exothermic ceramics have an enhanced elegant design.
Abstract:
The present invention discloses crystallized silicate-synthetic powder comprising a mullite (3Al2O3.2SiO2) crystalline phase, a anorthite (CaO.Al2O3.2SiO2) crystalline phase, and a corundum (Al2O3) crystalline phase, and discloses a high-strengthened porcelain body containing the above crystallized silicate-synthetic powder and formed by mixing the crystallized silicate-synthetic powder and kaolin mineral.
Abstract:
The present invention discloses crystallized silicate-synthetic powder comprising a mullite (3Al2O3.2SiO2) crystalline phase, a anorthite (CaO.Al2O3.2SiO2) crystalline phase, and a corundum (Al2O3) crystalline phase, and discloses a high-strengthened porcelain body containing the above crystallized silicate-synthetic powder and formed by mixing the crystallized silicate-synthetic powder and kaolin mineral.
Abstract:
A process for producing a porous ceramic body comprises a) mixing a coated porogen with a silicate or a oxide ceramic precursor, wherein the porogen is decomposable to gaseous decomposition products and optionally solid products upon heating, and is coated with a coating agent; b) forming a green body from the mixture obtained in step (a); and c) firing the green body obtained in step (b) to obtain the ceramic body, whereby the porogen decomposes to form pores within the ceramic body and the coating agent is deposited at the inner surface of the pores. The porogen is coated with a coating agent which, upon firing, is deposited at the inner surface of the ceramic pores, so that porous ceramics having decreased weight and improved porosity are obtained, while maintaining at the same time good mechanical strength. A green body and a porous ceramic body obtainable with the above-mentioned process are described too.
Abstract:
Proppant material for hydraulic fracturing is provided. The particles of the proppant are formed by drip casting. A slurry of finely divided ceramic particles is flowed through nozzles and formed into droplets under the influence of vibration. Uniform sized, smooth surface, spherical green particles are formed. The green particles are dried and sintered to form the proppant. The proppant is used in the process of hydraulic fracturing of wells.
Abstract:
A 3D printing system may print a desired 3D object. A fusible powder may fuse when subjected to a fusing condition. A deposition system may deposit portions of the fusible powder on a substrate. A fusing system may apply the fusing condition to the deposited fusible powder. Inhibitor material may not fuse when subjected to the fusing condition. An insertion system may insert a portion of the inhibitor material between portions of the deposited fusible powder after having been deposited by the deposition system, but before being fused by the fusing system, so as to form a boundary that defines at least a portion of a surface of the desired 3D object.
Abstract:
The present invention relates to a ceramic glaze composition characterized in that it comprises, in percentage by weight in relation to the total weight of the composition: a) from 50 to 90% by weight of a product, which in turn comprises from 10 to 90% by weight of a compound with photocatalytic properties, and from 10 to 90% by weight of at least one natural and/or synthetic material selected from a group of substances with feldspar of feldspathoid structure; b) from 5 to 50% by weight of at least one fluxing additive; and c) from 0.5 to 20% by weight of sodium tripolyphosphate.It will be also an object of this invention the method for preparing said ceramic glaze, as well as its application in ceramic pieces capable of reducing NOxs existing in the air.