Abstract:
In an aspect, an organic light-emitting display apparatus and a method of manufacturing the same are provided. The organic light-emitting display apparatus may include a substrate; a display unit formed on the substrate; and a thin film encapsulating layer encapsulating the display unit. The thin film encapsulating layer may include a plurality of organic layers and inorganic layers that are laminated alternately. At least one of the plurality of the inorganic films may include a first layer formed of a first material, a second layer formed of a second material other than the first material, and an intermediate layer provided between the first and second layers.
Abstract:
A vapor deposition apparatus for depositing a thin film on a substrate, by which a deposition process is efficiently performed and deposition film characteristics are easily improved, and a vapor deposition apparatus including: a stage onto which a substrate is disposed; and a supply unit disposed to face the substrate and having a main body member and a nozzle member disposed on one surface of the main body member facing the substrate, to sequentially supply a plurality of gases towards the substrate, and a method of manufacturing an organic light-emitting display apparatus using the same.
Abstract:
A flexible display apparatus includes a flexible substrate, a display layer disposed on one surface of the flexible substrate and including a plurality of pixels, graphene disposed on a surface opposing the one surface of the flexible substrate, and an encapsulation layer covering the display layer.
Abstract:
A flexible display apparatus includes a flexible substrate, a display layer disposed on one surface of the flexible substrate and including a plurality of pixels, graphene disposed on a surface opposing the one surface of the flexible substrate, and an encapsulation layer covering the display layer.
Abstract:
A thin film encapsulation manufacturing apparatus includes a first cluster configured to form a first inorganic layer on a first substrate, on which an emission unit is formed, by a sputtering process; a second cluster configured to form a first organic layer on the first inorganic layer on the first substrate conveyed from the first cluster by an organic deposition process; a first connection module configured to connect the first cluster and the second cluster, configured to convey the first substrate on which the first inorganic layer is formed from the first cluster to the second cluster, and configured to cool the first substrate in a non-contact manner; and a third cluster configured to form a second inorganic layer on the first organic layer on the first substrate conveyed from the second cluster by a chemical vapor deposition (CVD) process or a plasma enhanced chemical vapor deposition (PECVD) process.
Abstract:
A vapor deposition apparatus for depositing a thin layer on a substrate, the vapor deposition apparatus includes a plurality of modules arranged to respectively face different regions of the substrate, each of the plurality of modules including a body unit, and a nozzle unit disposed on one of surfaces of the body unit facing the substrate, where the plurality of modules is configured to individually perform deposition processes on different regions of the substrate, respectively.
Abstract:
A flexible display apparatus includes a flexible substrate, a display layer disposed on one surface of the flexible substrate and including a plurality of pixels, graphene disposed on a surface opposing the one surface of the flexible substrate, and an encapsulation layer covering the display layer.
Abstract:
A plasma processing apparatus including: a chamber configured to provide a space for processing a substrate; a substrate stage configured to support the substrate within the chamber and including a first electrode, the first electrode configured to receive a first radio frequency signal; a second electrode disposed on an upper portion of the chamber to face the first electrode, the second electrode configured to receive a second radio frequency signal; a gas supply unit configured to supply a process gas onto the substrate within the chamber; and a thermal control unit configured to circulate a heat transfer medium through a first fluid passage provided in the first electrode and a second fluid passage provided in the second electrode to maintain the first and second electrodes at the same temperature.
Abstract:
A thin film encapsulation manufacturing apparatus includes a first cluster configured to form a first inorganic layer on a first substrate, on which an emission unit is formed, by a sputtering process; a second cluster configured to form a first organic layer on the first inorganic layer on the first substrate conveyed from the first cluster by an organic deposition process; a first connection module configured to connect the first cluster and the second cluster, configured to convey the first substrate on which the first inorganic layer is formed from the first cluster to the second cluster, and configured to cool the first substrate in a non-contact manner; and a third cluster configured to form a second inorganic layer on the first organic layer on the first substrate conveyed from the second cluster by a chemical vapor deposition (CVD) process or a plasma enhanced chemical vapor deposition (PECVD) process.
Abstract:
Provided is a vapor deposition apparatus including a deposition unit including a plurality of deposition modules disposed parallel to each other and a substrate mounting unit located below the deposition unit, on which a substrate is mounted. In this case, each of the plurality of deposition modules includes a nozzle configured to selectively inject a raw gas and a purge gas toward the substrate mounting unit, and the nozzle injects the raw gas while the substrate mounting unit is being located below the nozzle.