Abstract:
Aspects of the present disclosure provide techniques and apparatus for improving user experience of a voice call associated with a simultaneous voice and long-term evolution (SV-LTE) device (e.g., improving silent redial during a mobile originated (MO) call or mobile terminated (MT) call by a SV-LTE device. A method for wireless communications by a user equipment (UE) capable of communicating via a first packet-based radio access technology (RAT) and a second circuit-switched RAT is provided. The method generally includes detecting initiation of a mobile originated (MO) call, attempting to establish a connection with the first RAT prior to sending a session initiation protocol (SIP) message for the MO call, determining whether the connection is successfully established, and, if the connection is successfully established, sending the SIP message. Numerous other aspects are provided.
Abstract:
Aspects of the disclosure are directed to congestion control in a user equipment in connected mode including upon receipt of a trigger, using a register to determine if a data packet transmission has been initiated by an application associated with the UE, wherein the UE is in a connected mode; retrieving an Application-specific Congestion control for Data Communication (ACDC) category mapped to the application associated with the UE, wherein a mapping between the ACDC category and the application is performed a priori to a transition to the connected mode; retrieving at least one access control parameter based on the ACDC category; and determining if the application is allowed to perform the data packet transmission based on the at least one access control parameter.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided where, at a first wireless node, a weighted average of a frame loss rate is determined for a plurality of frames transmitted from a second wireless node using a first codec; feedback is transmitted to the second wireless node based at least in part on the frame loss rate; and one or more frames are received from the second wireless node using a second codec, responsive to transmitting the feedback. Also, transmitting from a first wireless node a plurality of frames to a second wireless node using a first codec; receiving frame loss rate information from the second wireless node responsive to the transmitting; selecting a second codec, based at least in part on the frame loss rate information, and transmitting a second plurality of frames to the second wireless node using the second codec.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. In one aspect, the UE may establish a context for a first RAT, perform an activity involving at least one transmission via a second RAT without initiating a procedure to suspend the context for the first RAT when a duration of the activity is less than a threshold, and communicate via the first RAT using the context after the activity is performed. In another aspect, the UE may receive one or more signals via at least a first RAT, transmit via a second RAT, and perform at least one cell reselection procedure using the one or more signals during the transmission via the second RAT.
Abstract:
Methods, systems, and devices are described for wireless communication at a UE. A user equipment (UE) may establish a connection to a serving cell and monitor channel conditions for the serving cell and neighboring cells. Based on the channel conditions, the UE may determine to read the system information of a non-serving neighbor. The UE may then read the system information of the non-serving neighbor cell while still connected to the serving cell. In some cases, the UE may store the system information in a database. When the time comes for the UE to access the neighbor cell (e.g., if the link to the serving cell fails) the UE may proceed with access procedures without delay using the stored system information.
Abstract:
Methods and apparatuses are provided for managing a list of target frequencies for cell measurement. A set of available target frequencies for performing cell measurements from a serving cell can be received, and at least a subset of the set of available target frequencies can be prioritized based at least in part on a list of a plurality of target frequencies stored in a reselection database for the serving cell. Cell measurements can be performed based at least in part on at least the subset of the set of available target frequencies as prioritized. Additionally, the plurality of target frequencies in the reselection database may correspond to target frequencies to which successful reselection has occurred from the serving cell.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives an MBMS service from a first cell in a first MBSFN area while in an RRC idle mode. The apparatus reselects to a second cell through an intra-frequency cell reselection upon moving into coverage of the second cell. The second cell is a non-MBSFN cell or an MBSFN cell in a second MBSFN area different than the first MBSFN area. The apparatus continues to receive the MBMS service directly from the first cell while receiving paging signals from the second cell.
Abstract:
A method for wireless communication by a wireless relay device comprises receiving, over a first wireless connection of a first connection type between a first wireless device and the relay device, a request to establish a connection between the first wireless device and a network via the first wireless connection and a second wireless connection of a second connection type between the relay device and the network. The method further comprises determining a priority associated with the first wireless device based on at least one parameter associated with the first wireless device. The method further comprises establishing, at the relay device, the connection between the first wireless device and the network when the priority associated with the first wireless device is higher than a priority associated with at least one of a plurality of other wireless devices having a connection with the network via the second wireless connection.
Abstract:
Methods, systems, and devices are described for media synchronization. Multi-stream media processes may include media streams captured with respect to different clock rates. Multi-processor implementations may involve separate clocks associated with different media streams, such as audio and video, respectively. The separate clocks may tend to drift from one another, becoming further out of sync as time passes. Selecting a reference time of one of the processors to function as a “wall clock,” recording frame capture times with respect to the reference time, accounting for propagation delays, and transmitting frame capture times in terms of the reference time may aid in AV synchronization at a device where audio and video streams are received.
Abstract:
Systems, methods, and devices for establishing a data connection from multiple access networks to a carrier core network are described. A method includes connecting to a first access point name (APN) based on a policy of a user equipment via a wireless local area network (WLAN). The method further includes determining to connect to a second APN. The method further includes detecting that the first APN is an attach APN according to a carrier cellular network. The method further includes detecting a conflict that the connection to the first APN is required to stay over the WLAN. The method further includes transmitting an attach request after detecting the conflict. The method further includes receiving an attach response. The method further includes connecting to the APN identified in the attach response.